CHAPTER

FUNDAMENTAL PARAMETERS
OF ANTENNAS

2.1 INTRODUCTION

To describe the performance of an antenna, definitions of various parameters are
necessary. Some of the parameters are interrelated and not all of them need be specified
for complete description of the antenna performance. Parameter definitions will be
given in this chapter. Many of those in quotation marks are from the IEEE Standard
Definitions of Terms for Antennas (IEEE Std 145-1983).% This is a revision of the
IEEE Std 145-1973.

2.2 RADIATION PATTERN

An antenna radiation pattern or antenna pattern is defined as “*a mathematical func-
tion or a graphical representation of the radiation properties of the antenna as a
function of space coordinates. In most cases, the radiation pattern is determined in
the far-field region and is represented as a function of the directional coordinates.
Radiation properties include power flux density, radiation intensity, field strength,
directivity phase or polarization.”” The radiation property of most concern is the two-
or three-dimensional spatial distribution of radiated energy as a function of the ob-
server’s position along a path or surface of constant radius. A convenient set of
coordinates is shown in Figure 2.1. A trace of the received power at a constant radius
is called the power pattern. On the other hand, a graph of the spatial variation of the
electric (or magnetic) field along a constant radius is called an amplitude field pattern.
In practice, the three-dimensional pattern is measured and recorded in a series of two-
dimensional patterns. However, for most practical applications. a few plots of the
pattern as a function of @ for some particular values of ¢, plus a few plots as a function
of ¢ for some particular values of #, give most of the useful and needed information.

#IEEE Transactions on Antennas and Propagation, Yols, AP-17, No. 3, May 1969; Vol. AP-22, No. |,
Junuary 1974; and Vol. AP-31, No. 6, Part 11, November 1983,
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Figure 2.1 Coordinate system for antenna analysis.

2.2.1 Isotropic, Directional, and Omnidirectional Patterns

An isorropic radiator is defined as *‘a hypothetical lossless antenna having equal
radiation in all directions.”” Although it is ideal and not physically realizable, it is
ofien taken as a reference for expressing the directive properties of actua) antennas.
A directional antenna is one ‘‘having the property of radiating or receiving electro-
magnetic waves more effectively in some directions than in others. This term is usually
applied to an antenna whose maximum directivity is significantly greater than that of
a half-wave dipole.”” An example of an antenna with a directional radiation pattern
is shown in Figure 2.2. It is seen that this pattern is nondirectional in the azimuth
plane [fi¢p), 0 = 7/2] and directional in the elevation plane [¢(6), ¢ = constant].
This type of a pattern is designated as omnidirectional, and it is defined as one “*having
an essentially nondirectional pattern in a given plane (in this case in azimuth) and a
directional pattern in any orthogonal plane (in this case in elevation).”” An omnidi-
rectional pattern is then a special type of a directional pattern.

2.2.2 Principal Patterns

For a linearly polarized antenna, performance is often described in terms of its prin-
cipal E- and H-plane patterns. The E-plane is defined as *‘the plane containing the
electric-field vector and the direction of maximum radiation,”” and the H-plane as
““the plane containing the magnetic-field vector and the direction of maximum radi-
ation.”” Although it is very difficult to illustrate the principal patterns without consid-
ering a specific example, it is the usual practice Lo orient most antennas so that at

.
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least one of the principal plane patterns coincide with one of the geometrical principal
planes. An illustration is shown in Figure 2.3, For this example, the x-z plane (elevation
plane; ¢ = 0) is the principal £-plane and the x-y plane (azimuthal plane: 6 = #/2)
is the principal H-plane. Other coordinate orientations can be selected.

2.2.3 Radiation Pattern Lobes

Various parts of a radiation pattern are referred to as lobes, which may be subclassified
into major or main, minor, side, and back lobes.

A radiation lobe is a “‘portion of the radiation pattern bounded by regions of
relatively weak radiation intensity.” Figure 2.4(a) demonstrates a symmetrical three
dimensional polar pattern with a number of radiation lobes. Some are of greater
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Figure 2.4 (a) Radiation lobes and beamwidths of an antenna pattern. (b) Linear
plot of power pattern and its associated lobes and heamwidths.
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radiation intensity than others. but all are classified as lobes. Figure 2.4(b) illustrates
a linear two-dimensional pattern [one plane of Figure 2.4(a)| where the same pattern
characteristics are indicated.

A computer program entitled 2-D ANTENNA PATTERN PLOTTER: RECTAN-
GULAR-POLAR [1] is included at the end of the chapter to plot two-dimensional
rectangular and polar graphs, to represent single-plane antenna patterns simifar to
those exhibited in Figure 2.4(ab) and elsewhere throughout the book. This program
is well commented to assist the user in its implementation and only the executable
part is included. Each pattern can be plotted in a linear or logarithmic (dB) scale. The
program is provided courtesy of Dr. Elsherbeni and Taylor [1]. and it is to be used
only in conjunction with this book and for not any other purpose.

A major lobe (also called main beam) is defined as “*the radiation lobe containing
the direction of maximum radiation.”” In Figure 2.4 the major lobe is pointing in the
¢ = 0 direction. In some antennas, such as split-beam antennas, there may exist more
than one major lobe. A minor lobe is any lobe except a major lobe. In Figures 2.4(a)
and (b) all the lobes with the exception of the major can be classified as minor lobes.
A side lobe is “*a radiation lobe in any direction other than the intended lobe.™
(Usually a side lobe 1s adjacent to the main lobe and occupies the hemisphere in the
direction of the main beam.) A back lobe is “*a radiation lobe whose axis makes an
angle of approximately 180° with respect to the beam of an antenna.” Usually it refers
to @ minor lobe that occupies the hemisphere in a direction opposite to that of the
major (main) lobe.

Minor lobes usually represent radiation in undesired directions. and they should
be minimized. Side lobes are normally the largest of the minor lobes. The level of
minor lobes is usually expressed as a ratio of the pawer density in the lobe in question
to that of the major fobe. This ratio is often termed the side lobe ratio or side lobe
level. Side lobe levels of —20 dB or smaller are usually not desirable in most
applications. Attainment of a side lobe level smaller than — 30 dB usually requires
very careful design and construction. In most radar systems, low side lobe ratios are
very important to minimize false target indications through the side lobes,

2.2.4 Field Regions

The space surrounding an antenna is usually subdivided into three regions: (a) reactive
near-field. (b) radiating near-field (Fresnel) and (c¢) far-field (Fraunhofer) regions as
shown in Figure 2.5. These regions are so designated to identify the field structure in
each, Although no abrupt changes in the field configurations are noted as the bound-
aries are crossed, there are distinet differences among them. The boundaries separating
these regions are not unique, although various criteria have been established and are
commonly used to identify the regions.

Reactive near-field region is defined as *‘that portion of the near-field region
immediately surrounding the antenna wherein the reactive field predominates.”” For
most antennas, the outer boundary of this region is commonly taken to exist at a
distance R < 0.62\/D’/A from the antenna surface, where A is the wavelength and
D is the largest dimension of the antenna. “‘For a very short dipole, or equivalent
radiator, the outer boundary is commonly taken to exist at a distance A/27 from the
antenna surface.”

Ruadiating near-field (Fresnel) region is defined as *‘that region of the field of an
antennd between the reactive near-field region and the far-field region wherein radi-
ation fields predominate and wherein the angular field distribution is dependent upon
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Figure 2.5 Field regions of an antenna.

the distance from the antenna. If the antenna has a maximum dimension that is not
large compared o the wavelength. this region may not exist. For an antenna focused
at infinity, the radiating near-field region is sometimes referred to as the Fresnel region
on the basis of analogy to optical terminology. If the antenna has a maximum overall
dimension which is very small compared to the wavelength, this field region may not
exist."” The inner boundary is taken to be the distance R = 0.62\/D’/A and the outer
boundary the distance R < 2D*/A where D is the largest* dimension of the antenna.
This criterion is based on a maximum phase error of 7/8. In this region the field
pattern is. in general, a function of the radial distance and the radial field component
may be appreciable.

Far-field (Fraunhofer) region is defined as “*that region of the field of an antenna
where the angular field distribution is essentially independent of the distance from the
antenna. If the antenna has a maximum® overall dimension D, the far-field region is
commonly taken to exist at distances greater than 2D%A from the antenna, A being
the wavelength. The far-field patterns of certain antennas, such as multibeam reflector
antennas, are sensitive to variations in phase over their apertures. For these antennas
2D*/A may be inadequate. In physical media, if the antenna has a maximum overall
dimension, D, which is large compared to /||, the far-field region can be taken to
begin approximately at a distance equal to |y|D*/7 from the antenna, y being the
propagation constant in the medium. For an antenna focused at infinity, the far-field
region is sometimes referred to as the Fraunhofer region on the basis of analogy to
optical terminology.”’ In this region, the field components are essentially transverse
and the angular distribution is independent of the radial distance where the measure-
ments are made. The inner boundary is taken to be the radial distance R = 2D%/\ and
the outer one at infinity.

To illustrate the pattern variation as a function of radial distance, in Figure 2.6
we have included three patterns of a parabelic reflector calculated at distances of
R = 2D°/A, 4D\, and infinity [2]. It is observed that the patterns are almost identical,

To be valid, D must also be large compared to the wavelength (D = A),

| ..
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J. 8. Hollis, T. I. Lyon, and L. Clayton, Ir. (eds.). Micro-
wave Antenna Measurements, Scientific-Atlanta, Inc., July
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except for some differences in the pattern structure around the first null and at a level
below 25 dB, Because infinite distances are not realizable in practice, the most
commonly used criterion for minimum distance of far-field observations is 2D*/A.

2.2.5 Radian and Steradian

The measure of a plane angle is a radian. One radian is defined as the plane angle
with its vertex at the center of a circle of radius r that is subtended by an arc whose
length is r. A graphical illustration is shown in Figure 2.7(a). Since the circumference
of a circle of radius »is C = 2arr, there are 277 rad (27 ¢/r) in a full circle.

The measure of a solid angle is a steradian. One steradian is defined us the solid
angle with its vertex at the center of a sphere of radius » that is subtended by a
spherical surface area equal to that of a square with each side of length r. A graphical
illustration is shown in Figure 2.7(b). Since the area of a sphere of radius ris A =
4771, there are 447 sr (477r°/r*) in a closed sphere.

The infinitesimal area dA on the surface of a sphere of radius », shown in Figure
2.1. is given by

dA = r*sin 0d0ddp  (m’) (2-1)
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Figure 2.7 Geometrical arrangements for defining
a radian and a steradian.

Therefore, the element of solid angle d{2 of a sphere can be written as

40 = d_A = sin A df dd (sr) (2-2)

r

2.3 RADIATION POWER DENSITY

Electromagnetic waves are used to transport information through a wireless medium
or a guiding structure, from one point to the other. It is then natural to assume that
power and energy are associated with electromagnetic fields. The quantity used to
describe the power associated with an electromagnetic wave is the instantaneous
Poynting vector defined as

W =€ x # (2-3)
‘W = instantaneous Poynting vector (W/m?)

€ = instantaneous electric field intensity  (V/m)

# = instantaneous magnetic field intensity (A/m)

Note that script letters are used to denote instantaneous fields and quantities, while
roman letters are used to represent their complex counterparts.
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Since the Poynting vector is a power density, the total power crossing a closed
surface can be obtained by integrating the normal component of the Poynting vector
over the entire surface. In equation form

{E‘:#W-JSZ#WW"HM (2-4)
g §

O = instantaneous total power (W)

i = unit vector normal to the surface

da = infinitesimal area of the closed surface (m?)
For applications of time varying fields, it is often more desirable 1o find the average
power density which is obtained by integrating the instantaneous Poynting vector
over one period and dividing by the period. For time harmonic variations of the form
e we define the complex fields E and H which are related to their instantaneous
counterparts € and € by

$(x, . 23 1) = Re[E(x, y, 2)ei*] (2-5)
H(x, v, 2 ) = Re[H(x, y, 7)e/] (2-6)

Using the definitions of (2-5) and (2-6) and the identity Re|Ee| = YEe¢/™ +
E#p /) (2.3) can be wrillen as

W =€ x # = {Re|E x H¥] + 1 Re[E x He ™| (2-7)

The first term of (2-7) is not a function of time, and the time variations of the second
are twice the given frequency. The time average Poynting vector (average power
density) can be written as

Walx ¥, 2) = [ W y 2 0]y = 1 Re[E x H¥] | (W/m®) (2-8)

The ; factor appears in (2-7) and (2-8) because the E and H fields represent peak
values, and it should be omitted for RMS values.

A close observation of (2-8) may raise a question. If the real part of (E x H#*)/2
represents the average (real) power density. what does the imaginary part of the same
quantity represent? At this point it will be very natural to assume that the imaginary
part must represent the reactive (stored) power density associated with the electro-
magnetic fields. In later chapters, it will be shown that the power density associated
with the electromagnetic fields of an antenna in its far-field region is predominately
real and will be referred to as radiation density.

Based upon the definition of (2-8), the average power radiated by an antenna
(radiated power) can be written as

Pl'ild = Pu\ = # Wnu.l vds = # Wm.. * fda
5

2 Fof

@S Re(E x H¥) - ds

.
2.5"
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2.3 Radiation Power Density

The power pattern of the antenna, whose definition was discussed in Section 2.2,
is just a measure, as a function of direction, of the average power density radiated by
the antenna. The observations are usually made on a large sphere of constant radius
extending into the far-field. In practice. absolute power patterns are usually not desired.
However, the performance of the antenna is measured in terms of the gain (to be
discussed in a subsequent section) and in terms of relative power patterns, Three-
dimensional patterns cannot be measured, but they can be constructed with a number
of two-dimensional cuts.

Example 2.1
The radial component of the radiated power density of an antenna is given by
- ~ » g SNLF 3
Woa = 4W, = 4, A, sin 8/r- {Wim™)y

where Ay is the peak value of the power density. @ is the usual spherical coordinate,
and 4, is the radial unit vector. Determine the total radiated power.

SOLUTION

For a closed surface, a sphere of radius r is chosen. To find the total radiated power,
the radial component of the power density is integrated over its surface. Thus

Pl:\d =~ (J—-f) “'I“u] il det
o

B il (| S, X )
= a4,Ap ——|* (4,7~ sin 0dBdd) = A, (W)
i JO e

A three-dimensional normalized plot of the average power density at a distance of
r = | mis shown in Figure 2.2,

An isotropic radiator is an ideal source that radiates equally in all directions. Although
it does not exist in practice, it provides a convenient isotropic reference with which
0 compare other antennas, Because of its symmetric radiation, its Poynting vector
will not be a function of the spherical coordinate angles 6 and ¢. In addition, it will
have only a radial component. Thus the total power radiated by it is given by

Py = @ W, ds = J I [4,Wy(r)] * (4,77 sin 8dO dd) = d7r*W, (2-10)
{ 1]
W

0 i,

and the power density by

I Pl'll y)
W, = a.W, - ‘A]‘J[_?jjl) {(W/m~) (2-11)
T

which is uniformly distributed over the surface of a sphere of radius .
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2.4 RADIATION INTENSITY

Radiation intensity in a given direction is defined as “‘the power radiated from an
antenna per unit solid angle.” The radiation intensity is a far-field parameter. and it
can be obtained by simply multiplying the radiation density by the square of the
distance. In mathematical form it is expressed as

L = rl Wrud (2-1 2)

where

U/ = radiation intensity (W/unit solid angle)
W, = radiation density (W/m’)

The radiation intensity is also related to the far-zone electric field of an antenna by

,"1 - ?'2 ) =y
U, ) = 5= [Er 0, §)F = - [|Eytr. 0. B + |Eyir. 0. df)
2n n
| (2-12a)
= 5[ E(0, ) + |E36, &)
where
)_Jl'hl

E (r. 0. ¢p) = far-zone electric field intensity of the antenna = E°(f), ¢)

P
Ey Ey = far-zone electric field components of the antenna
7 = intrinsic impedance of the medium

Thus the power pattern is also a measure of the radiation intensity,
The total power is obtained by integrating the radiation intensity. as given by
(2-12). over the entire solid angle of 4. Thus

oy w
Py = # U dQ = J“ L U sin 0 d0 dd (2-13)
4]

where d€) = element of solid angle = sin # df dd.

Example 2.2

For the problem of Example 2.1, find the total radiated power using (2-13).

SOLUTION
Using (2-12)

U= r*Wu = Agsin @
and by (2-13)

Prg = J:J- J:, Usin 8d0dd = Ay J:‘ L sin® 0dO dd = A,
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which is the same as that obtained in Example 2.1. A three-dimensional plot of the
relative radiation intensity is also represented by Figure 2.2.

For an isotropic source. U/ will be independent of the angles 6 and ¢, as was the case
for Wg. Thus (2-13) can be wrilten as

Py = (g) Uy, dQ) = Uy dQ) = 47U, (2-14)
1 0
or the radiation intensity of an isotropic source as

F )I.".l.' |

dar

Uy =

2.5 DIRECTIVITY

In the 1983 version ol the IEEE Standard Definitions of Terms for Antennas, there
has been a substantive change in the definition of directiviry, compared to the definition
of the 1973 version. Basically the term directivity in the new 1983 version has been
used to replace the term directive gain of the old 1973 version. In the new 1983
version the term directive gain has been deprecated. According to the authors of the
new 1983 standards, “*this change brings this standard in line with common usage
among antenna engineers and with other international standards. notably those of the
International Electrotechnical Commission (IEC).”" Therefore directivity of an an-
tenna defined as *“the ratio of the radiation intensity in a given direction from the
antenna Lo the radiation intensity averaged over all directions. The average radiation
intensity is equal to the total power radiated by the antenna divided by 4. If the
direction is not specified. the direction of maximum radiation intensity is implied."’
Stated more simply. the directivity of a nonisotropic source is equal to the ratio of its
radiation intensity in a given direction over that of an isotropic source. In mathematical
form. using (2-15), it can be written as

D=—=— (2-16)

[f the direction is not specified, it implies the direction of maximum radiation intensity
(maximum directivity) expressed as

|
{'fl max {'rrlll'l 4?‘_{jlll'l

Dyx = Dy = | — = .h‘ = =
Uy Uy Prud

(2-16a)

D = directivity (dimensionless)
Dy = maximum directivity (dimensionless)
U/ = radiation intensity  (W/unit solid angle)
Uppae = maximum radiation intensity  (W/unit solid angle)
U, = radiation intensity of isotropic source (W/unit solid angle)

P4 = total radiated power (W)

radl
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For an isotropic source, it is very obvious from (2-16) or (2-16a) that the directivity
is unity since U, U,,,. and Uy are all equal to each other.

For antennas with orthogonal polarization components. we define the partial
directivity of an antenna for a given polarization in a given direction as *‘that part of
the radiation intensity corresponding to a given polarization divided by the total
radiation intensity averaged over all directions.”” With this definition for the partial
directivity, then in a given direction “‘the total directivity 1s the sum of the partial
directivities for any two orthogonal polarizations.”” For a spherical coordinate system,
the total maximum directivity 1, for the orthogonal ) and ¢ components of an antenna
can be written as

D{J = Dﬂ + Dd) (2"[?}
while the partial directivities D2, and D, are expressed as
41'TUF,|
Dy=——""—"6#Z#/— (2-17a
" Paddy + (Padde ' ‘
47l
Dy s (2-17b)

a (Prml)r) i {Pmd)r,b

{/, = radiation intensity in a given direction contained in ¢ field component
U, = radiation intensity in a given direction contained in ¢ field component
(Pra)y = radiated power in all directions contained in @ field component
(Paa)y = radiated power in all directions contained in ¢ field component

Example 2.3

As an illustration, find the maximum directivity of the antenna whose radiation inten-
sity is that of Example 2.1. Write an expression for the directivity as a function of
the directional angles # and .

SOLUTION
The radiation intensity is given by
U= r*W.y = Aysin @
The maximum radiation is directed along 6 = /2. Thus
Unax = Ap
In Example 2.1 it was found that
Py = T Ay
Using (2-16a), we find that the maximum directivity is equal to
R/ P 4 127

D —
H Prad m
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Since the radiation intensity is only a function of #, the directivity as a function of
the directional angles is represented by

D =Dysinfl = 1.27sin 6

Before proceeding with a more general discussion of directivity, it may be proper
at this time to consider another example, compute its directivity, compare it with that
of the previous example, and comment on what it actually represents. This may give
the reader a better understanding and appreciation of the directivity.

Example 2.4

The radial component of the radiated power density of an infinitesimal linear dipole
of length / << A is given by

W,, = W, = 8, Aysin® 8/r® (W/m?)

where A is the peak value of the power density, 6 is the usual spherical coordinate.
and &, is the radial unit vector. Determine the maximum directivity of the antenna
and express the directivity as a function of the directional angles # and ¢.

SOLUTION
The radiation intensity is given by
U= r*W, = Ay sin® 6
The maximum radiation is directed along ¢ = /2. Thus
Unax = Ag
The total radiated power is given by
Pog = # Ud) = A, J”""" J”F sin® @ sin A dO dop = A”(HTW)
0 : ’ o

Using (2-16a), we find that the maximum directivity is equal to

4l ax 47A, 3

Oy = = - 1770, _ 2

‘”[".ld BT 2
T{fi"-rr)

which is greater than 1.27 found in Example 2.3. Thus the directivity is represented by

D = Dy sin # = 1.5 sin” 6

At this time it will be proper to comment on the results of Examples 2.3 and 2.4. To
better understand the discussion, we have plotted in Figure 2.8 the relative radiation

.




42  Chapter 2 Fundamental Parameters of Antennas

U=sin®0

Figure 2.8 Three-dimensional radiation intensity patterns.
(SOURCE: P, Lorrain and D. R. Corson, Electromagnetic Fields
and Waves, 2nd ed., W. H, Freeman and Co. Copyright © 1970)

intensities of Example 2.3 (U = Ay sin #) and Example 2.4 (U = A sin® ) where
Ay was set equal to unity. We see that both patterns are omnidirectional but that of
Example 2.4 has more directional characteristics (is narrower) in the elevation plane.
Since the directivity is a ““figure-ol-merit’" deseribing how well the radiator directs
energy in a certain direction, it should be convincing from Figure 2.8 that the direc-
tivity of Example 2.4 should be higher than that of Example 2.3,

To demonstrate the significance of directivity. let us consider another example;
in particular let us examine the directivity of a hall-wavelength dipole (I = A/2),
which is derived in Section 4.6 of Chapter 4 and can be approximated by

D = Dysin® @ = 1.67 sin® ¢ (2-18)

cos (%T Cos 9)

sin® ¢ = ——— (2-18a)
sin f

since 1t can be shown that

where ¢ is measured from the axis along the length of the dipole. The values repre-
sented by (2-18) and those of an isotropic source (D = 1) are plotted two- and three-
dimensionally in Figure 2.9(a,b). For the three-dimensional graphical representation
of Figure 2.9(b), at each observation point only the largest value of the two directivities
is plotted, It is apparent that when sin~'(1/1.67)"" = 57.44° < @ < 122.56°, the
dipole radiator has greater directivity (greater intensity concentration) in those direc-
tions than that of an isotropic source. Outside this range of angles, the isotropic
radiator has higher directivity (more intense radiation), The maximum directivity of
the dipole (relative to the isotropic radiator) occurs when ¢ = /2, and it is 1.67 (or
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Figure 2.9 Two- and three-dimensional directivity patterns of a A/2 dipole. (sourcE: C. A.
Balanis, **Antenna Theory: A Review.”” Proc. [EEE, Vol. 8(), No. |. January 1992, © 1992
tEEE.)
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2.23 dB) more intense than that of the isotropic radiator (with the same radiated
power).

The three-dimensional pattern of Figure 2.9(b), and similar ones. are included
throughout the book to represent the three-dimensional radiation characteristics of
antennas. These patterns are plotted using software developed in [3] and [4], and can
be used to visualize the three-dimensional radiation pattern of the antenna. Muany
exarmples are demonstrated in {4]. The executable part of the computer program of
[4] 15 included at the end of the chapter. courtesy of the authors Dr. Elsherbeni and
Taylor, for use by the reader. The three-dimensional program of [4]. along with the
others, can be used effectively toward the design and synthesis of antennas. especially
arrays, as demonstrated in [3] and |6].

The directivity ol an isotropic source is unity since its power is radiated equally
well in all directions. For all other sources, the maximum directivity will always be
greater than unity, and it is a relative “figure-of-merit”" which gives an indication of
the directional properties of the antenna as compared with those of an isotropic
souwrce. In equation form, this is indicated in (2-16a). The directivity can be smaller
than unity: in fact it can be equal to zero. For Examples 2.3 and 2.4, the directivity
is equal to zero in the 8 = 0 direction. The values of directivity will be equal to or
greater than zero and equal to or less than the maximum divectivity (0 = D = D).

A more general expression for the directivity can be developed to include sources
with radiation patterns that may be functions ol both spherical coordinate angles #
and . In the previous examples we considered intensities that were represented by
only one coordinate angle @, in order not to obscure the fundamental concepts by the
mathematical details. So it may now be proper, since the basic definitions have been
illustrated by simple examples. to formulate the more general expressions.

Let the radiation intensity of an antenna be of the form

EXO, ¢ +

| .
U = ByF(0, ¢) = ;}1 EN0, 7] (2-19)

where By is a constant, and £} and £} are the antenna’s far-zone electric field com-
ponents. The maximum value of (2-19) is given by
U‘nilx = BUF{H‘ {#.}lnhix = !3{]};!“1!1.\{9! (fJI} (2'193.)

The total radiated power is found using
r (w
Py = @ e, ¢) dd = By L J:, F(0, @) sin 6 d6 ddy (2-20)
0

We now write the general expression for the directivity and maximum directivity
using (2-16) and (2-16a). respectively. as

F(O, ¢)

Bt i = S (2-21)
ﬁ} Ju F(O. ) sin 0 dfl d

Dy = 47— F6. Pl (2-22)

L J’(, F(O, ¢) sin 0 dO dd
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Equation (2-22) can also be written as

; dar _Am
)II T M o _(_l‘ 13"23}
J ’ : F(A, &) sin 0 d6 dep F(6, )] ma
] JH
where (), is the beam solid angle, and it is given by
I 27 [ ) ) . 2w ‘ .
Dy = —— F(0, &) sin 0.df dp = F.(6, &) sin 6 df d
F(O, P 10 J0 JooJo
(2-24)
. F(, ¢)
F,(0. &) (2-25)

Dividing by F(8. )|, merely normalizes the radiation intensity F(8, ¢). and it
makes its maximum value unity.

The beam solid angle (), is defined as the solid angle through which all the
power of the antenna would flow if its radiation intensity is constant (and equal 1o
the maximum value of U) for all angles within ().

2.5.1 Directional Patterns

Instead of using the exact expression of (2-23) to compute the directivity. it is often
convenient to derive simpler expressions, even if they are approximate. to compute
the directivity. These can also be used for design purposes. For antennas with one
narrow major lobe and very negligible minor lobes. the beam solid angle is approxi-
mately equal to the product of the half-power beamwidths in two perpendicular planes
[7] shown in Figure 2.10(a). For a rotationally symmetric pattern, the half-power

= 85,

() Nonsymmetrical pattern (b} Symmetrical pattern

Figure 2.10 Beam solid angles for nonsymmetrical and symmetrical ra-
diation patterns.
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beamwidths in any two perpendicular planes are the same, as illustrated in Figure
2.10(b).
With this approximation, (2-23) can be approximated by

dar 47
£ e (2-26
Do Q, 0,0, )
The beam solid angle {3, has been approximated by
Q, = 0,0, (2-26a)

where
0, = hall-power beamwidth in one plane (rad)
0),, = half-power beamwidth in a plane at a right angle to the other (rad)

If the beamwidths are known in degress, (2-26) can be written as

_ 4m(I180/m)° _ 41.253
e 0,0, 0,0,

(2-27)

where
), = half-power beamwidth in one plane (degrees)
), half-power beamwidth in a plane at a right angle to the other (degrees)

2

]

For planar arrays, a better approximation to (2-27) is [3]

32400 32400

Do = — . (2-27a)
Y O (degrees) 0,0,

The validity of (2-26) and (2-27) is based on a pattern that has only one major
lobe and any minor lobes, if present. should be of very low intensity. For a pattern
with two identical major lobes, the value of the maximum directivity using (2-26) or
(2-27) will be twice its actual value. For patterns with significant minor lobes. the
values of maximum directivity obtained using (2-26) or (2-27), which neglect any
minor lobes, will usually be too high.

Example 2.5

The radiation intensity of the major lobe of many antennas can be adequately repre-
sented by

U = Bycos

where By is the maximum radiation intensity. The radiation intensity exists only in
the upper hemisphere (0 = 8 = #/2, 0 = ¢ = 2m), and it is shown in Figure 2.11.
Find the maximum directivity using (2-26) or (2-27) and compare it with its exact
value.
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Figure 2.11 Radiation intensity pattern
of the form U = cos # in the upper hemi-

sphere.

SOLUTION
The half-power point of the pattern occurs at # = 60°, Thus the beamwidth in the 0

direction is 120° or

g
Fary
® =

]

s |

Since the pattern is independent of the ¢ coordinate, the beamwidth in the other plane
15 also equal to

)
0, =

™

The maximum directivity, using (2-26). is then equal to

dqr 9
o= — = — = 2.86
(27/3)° 0

Now let us find the exact value ol the maximum directivity and compare the results.

U= Bycos

f"rm.m =3 R|_| COS l".r:nl.'\x == Hi]
P = I. I” By cos 0 sin § df ddp = 2B, J” cos fsin 6 do
P.g = 7By : sin(26) d6 = 7B,
4l 'Iflll'.l.\ 4 T"‘Bl'l 5 2
Dy=—-"—"=—/7""=4 (dimensionless)
Jprml TI'HU
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The exact maximum directivity is 4 and its approximate value, using (2-26), is 2.86,
Better approximations can be obtained if the patterns have much narrower beam-
widths. which will be demonstrated later in this section.

Many times it is desirable to express the directivity in decibels (dB) instead of
dimensionless quantities. The expressions for converting the dimensionless quantities
of directivity and maximum directivity to decibels (dB) are
D(dB) = 10 log,o|D(dimensionless)| (2-28a)
Dy(dB) = 10 log ol Dy(dimensionless)] (2-28b)

It has also been proposed |9 that the maximum directivity of an antenna can also
be obtained approximately by using the formula

| 141 |
EHP- K 2-29
Dy 2 (D| Dz) S
where
| 16 1n 2
D, = Pt (2-29a)
| j(-l“& ’ @‘t-r
T2 sin 0 df
5
D, = I _161In2 (2-296)

. | 9,42 G
3102 J‘] sin () dt
n [

®,, and ©,, are the half-power beamwidths (in radians) of the E- and H-planes,
respectively. The formula of (2-29) will be referred to as the arithmetic mean of the
maximum directivity, Using (2-29a) and (2-29b) we can write (2-29) as

| 1 (@3 03) 01 + 03
L. e = S 2-30
By 2]112(]6 6] 32In2 el

or
32 1n2 22181

By _— - 2-30a)
T8+ 03 e, + 03 pe-a0R)

22181 (180/77  72.815
o P = (2-30b)

0 + 03, O + 03

where O, and O, are the hal(-power beamwidths in degrees. Equation (2-30a) is to
be contrasted with (2-26) while (2-30b) should be compared with (2-27).

In order to make an evaluation and comparison of the accuracies of (2-26) and
(2-30a), examples whose radiation intensities (power patterns) can be represented by

Bycos"(#) O0=f0=w2, 0=¢ =27

v, ¢) = {l} elsewhere (231)
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where n = 1 — 10, 11.28, 15, and 20 are considered. The maximum directivities
were computed using (2-26) and (2-30a) and compared with the exact values as
obtained using (2-22). The results are shown in Table 2.1. From the comparisons it
is evident that the error due to Tai & Pereira’s formula is always negative (i.e., il
predicts lower values of maximum directivity than the exact ones) and monotonically
decreases as n increases (the pattern becomes more narrow). However, the error due
to Kraus' formula is negative for small values of n and positive for large values of n.
For small values of n the error due to Kraus’ formula is negative and positive for
large values of n: the error is zero when n = 5.497 = 5.5 (half-power beamwidth of
56.35%). In addition, for symmetrically rotational patterns the absolute error due to
the two approximate formulas is identical when n = 11.28. which corresponds to a
haltf-power beamwidth of 39.77°. From these observations we conclude that, Kraus'
formula is more accurate for small values of n (broader patterns) while Tai & Pereira’s
is more accurate for large values of n (narrower patterns). Based on absolute error
and symmetrically rotational patterns, Kraus® formula leads to smaller error for
n << 11.28 (half-power beamwidth greater than 39.77%) while Tai & Pereira’s leads to
smaller error for n > 11.28 (half-power beamwidth smaller than 39.77°). The results
are shown plotted in Figure 2.12 for 0 < n = 450,

2.5.2 Omnidirectional Patterns

Some antennas (such as dipoles, loops, broadside arrays) exhibit omnidirectional
patterns, as illustrated by the three-dimensional patterns in Figure 2.13 (ab). As single-
lobe directional patterns can be approximated by (2-31), omnidirectional patterns can
often be approximated by

U = [sin"(8)| U=6=m 0=¢=27 (2-32)
where n represents both integer and noninteger values. The directivity of antennas
with patterns represented by (2-32) can be determined in closed form using the

Table 2.1 COMPARISON OF EXACT AND APPROXIMATE VALUES OF MAXIMUM
DIRECTIVITY FOR U = cos"¢ POWER PATTERNS

Exact Kraus Tai and Pereira
Equation Equation Kraus Equation Tai and Pereira
(2-22) (2-26) % Error (2-30a) % Error
4 2.86 —28.50 2.53 —36.75
6 5.00 —15.27 4.49 —25:17
8 T3 -8.12 6.44 —19.00
10 9.61 3.90 8.48 - 15.20
12 11.87 -1.08 10.47 —12.75
14 14.13 +0.93 12.46 —11.00
16 16.39 2.48 14.47 ~-9.56
18 18.66 3,68 16,47 — 250
20 20.93 + 4,64 18.47 7.65
22 23.19 +5.41 2047 —6.96
24.56 26.08 +6.24 23.02 —6.24
32 34.52 +7.88 30.46 —4.81

42 45.89 +9.26 40.46 —3.67
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Figure 2.12  Comparison of exact and approximate values of directivity for di-
rectional {J = cos"f power patterns.

definition of (2-16a). However. as was done for the single-lobe patterns of Figure
2,10, approximate directivity formulas have been derived [10], [11] for antennas with
omnidirectional patterns similar to the ones shown in Figure 2.13 whose main lobe is
approximated by (2-32).The approximate directivity formula for an omnidirectional
pattern as a function of the pattern half-power beamwidth (in degrees), which is
reported by McDonald in [10], was derived based on the array factor of a broadside
collinear array [see Section 6.4.1 and (6-38a)| and is given by

10]

Dy = 5
U HPBW (degrees) — 0.0027 [HPBW (degrees)|”

(2-33a)

However, that reported by Pozar in [11] is derived based on the exact values obtained
using (2-32) and then representing the data in closed-form using curve-fitting, and it
is given by

Dy = —1724 + 191 \/0.818 + I/HPBW (degrees) (2-33b)
The approximate formula of (2-33a) should. in general, be more accurate for omni-
directional patterns with minor lobes. as shown in Figure 2.13(a), while (2-33b) should
he more accurate for omnidirectional patterns with minor lobes of very low intensity
(ideally no minor lobes), as shown in Figure 2.13(b).

The approximate formulas of (2-33a) and (2-33b) can be used to design omnidi-
rectional antennas with specified radiation pattern characteristics. To facilitate this
procedure. the directivity of antennas with omnidirectional patterns approximated by
(2-32) is plotted in Figure 2.14 versus n and the half-power beamwidth (in degrees).
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(i) With minor lobes

(b} Without minor lobes

Figure 2.13  Omnidirectional patterns with and without minor
lobes.

Three curves are plotted in Figure 2.14; one using (2-16a) and referred as exact, one
using (2-33a) and denoted as McDonald, and the third using (2-33b) and denoted as
Pozar. Thus, the curves of Figure 2.14 can be used for design purposes, as follows:

a. Specify the desired directivity and determine the value of n and half-power
beamwidth of the omnidirectional antenna pattern, or

b.  Specify the desired value of n or half-power beamwidth and determine the direc-
tivity of the omnidirectional antenna pattern.

To demonstrate the procedure, an example is taken.

Example 2.6

Design an antenna with omnidirectional amplitude pattern with a half-power beam-
width of 90°, Express its radiation intensity by U/ = sin"f. Determine the value of n
and attemipt to 1dentify elements that exhibit such a pattern. Determine the directivity
of the antenna using (2-16a), (2-33a), and (2-33b).
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Figure 2.14 Comparison of exact and approximate values of directivity for
omnidirectional U/ = sin"0 power patterns,

SOLUTION

Since the half-power beamwidth is 90°, the angle at which the half-power point occurs
is 8 = 45° Thus

U8 = 45" = 0.5 = sin"(435°) = (0.707)"
or
n=2

Therefore, the radiation intensity of the omnidirectional antenna is represented by
U = sin®f. An infinitesimal dipole (see Chapter 4) or a small circular loop (see
Chapter 5) are two antennas which possess such a pattern.

Using the definition of (2-16a), the exact directivity is

Unmx:l
P =er~'36~' b0 dp =
md = | sin” # sin b = 3
47 3
= —— === 761 /dB
Po=gem =3 M

Since the half-power beamwidth is equal to 90°, then the directivity based on (2-33a)
is equal to
101

— T = § = ¥ ] B
90 — 0.0027 (90)" b2 Wi e

Dy
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while that based on (2-33b) is equal to

Dy= — 1724 + 191 4/0.818 + 1/90 = 1.516 = 1.807 dB

The value of n and the three values of the directivity can also be obtained using Figure
2.14, although they may not be as accurate as those given above because they have
to be taken off the graph. However, the curves can be used for other problems.

2.6 NUMERICAL TECHNIQUES

For most practical antennas, their radiation patterns are so complex that closed form
mathematical expressions are not available. Even in those cases where expressions
are available, their form is so complex that integration to find the radiated power,
required to compute the maximum directivity, cannot be performed. Instead of using
the approximate expressions of Kraus, Tat and Pereira, McDonald or Pozar alternate
and more accurate techniques may be desirable. With the high-speed computer sys-
tems now available, the answer may be to apply numerical methods.

Let us assume that the radiation intensity of a given antenna is separable, and it
is given by

U = B, f(0) g(d) (2-34)
where By, is a constant. The directivity for such a system is given by

41U

where

P = B:)J; { L f(8) g(p) sin 6 dB } do (2-36)
which can also be written as

o B“J; g(¢) { L J(8) sin 6.d0 } de (2-37)

If the integrations in (2-37) cannot be performed analytically, then from integral
calculus we can write a series approximation

™ Y
L f(0) sin 6do = Z [f(6) sin 6] A, (2-3%)
=1
For N uniform divisions over the 7 interval,

AB‘I T (2‘3 Ba}

=13
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-

8; (Eq. 2-38¢)
; (Eq. 2-38b) ——.

=

# (Eq, 2-39¢)

iy (Eq. 2-39h)

Figure 2.15 Digilization scheme of pattern in spheri-
cal coordinates.

Referring 1o Figure 2.15, #, can take many different forms. Two schemes are shown
in Figure 2.15 such that

W
R () [ . . . 23
&, .'(N)_ i (2-38b)
ar
= = Dy LSS N (2.38
= — A= = I = Fa ety T T P
" TN N ¢

In the former case, @ is taken at the trailing edge of each division; in the latter case,
0, is selected at the middle of each division. The scheme that is more desirable will
depend upon the problem under investigation. Many other schemes are available.

In a similar manner, we can write for the ¢ variations that

25 M
|7 et as = X 8(d) Ady (2-39)
=t
where for M uniform divisions

Ady = = (2-392)




2.6 Numerical Techniques 55

Again referring to Figure 2.15

J2m ; _ :
¢;=;(—M). f=142,3. .., (2-39b)
or
27 2ar
petel = W= I L% 3ol 2
b= ¥l = Vo Byvenll (2-39¢)

Combining (2-38), (2-38a), (2-39). and (2-39a) we can write (2-37) as.

N
P = BU(N) (i:,’) JE {g(qb, [;ﬂm sin a—]} (2-40)

The double summation of (2-40) is performed by adding for each value of j
(=123 ....Malvaluesof i § = 1,2.3,.. ., N). In a computer program
flowchart, this can be performed by a loop within a loop. Physically. (2-40) can be
interpreted by referring to Figure 2.15. It simply states that for each value of g(¢) at
the azimuthal angle ¢ = ¢, the values of f(#) sin @ are added for all values of 6 =
O (i = 1,2,3,....N). The values of 8, and ¢; can be determined by using either
of the forms as given by (2-38b) or (2-38¢) and (2-39b) or (2-39¢).
Since the # and ¢ variations are separable. (2-40) can also be written as

M N
Prad = B(J('?NT) (%T) [le g{‘i’;)] L:zl f(&,} sin Gi:l (2'41)

in which case each summation can be performed separately.
If the 0 and ¢ variations are not separable, and the radiation intensity is given by

U = By F(0, ¢) (2-42)

the digital form of the radiated power can be written as

Prai = BU(N) (ij;) 2 [Z F(0;, ) sin B] (2-43)

J=1

0; and ¢; take different forms. two of which were introduced and are shown pictorially
in Figure 2.15, The evaluation and physical interpretation of (2-43) is similar to that
of (2-40).

To examine the accuracy of the technique, two examples will be considered.

Example 2.7(a)

The radiation intensity of an antenna is given by

_|Bysinfsin®d, O0=6=m O0=d=7
U o) = {0 elsewhere
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Determine the maximum directivity numerically by using (2-41) with 6, and ¢; of
(2-38b) and (2-39b), respectively. Compare it with the exact value.

SOLUTION

Let us divide the # and ¢ intervals each into 18 equals segments (N = M = 18).
Since 0 = ¢ = 7, then Ad;, = /M and (2-41) reduces to

P= B,,( )[2 sin «;;,] [i sin® 9,]

with
6 = ’(T%) = }it =185 .. 8
b = ;‘(3) = 0% F= 1,8 B I8
; 18
Thus
Py = 30(%) (sin*(10°) + sin’(20°) + - -« + sin(180°)°
qr ¢ 1 ’JT'?'
wl = 7} [ 9 s = B T
Prl B”(]S) ( U(4)
and
doll 4
,(3” = _E% = _:'T — E = 50429

r il ?T‘f4 T
The exact value is given by

" 2 | i o T kil T 2
Pua = By J:' sin” o ddb Ju sin® #do = 5 (T_T) By = Ll B,

and
4 4
D= M - _jl 16 = 5.0029
Pr:ld w4 m

Which is the same as the value obtained numerically!

Example 2.7(b)

Given the same radiation intensity as that in Example 2.7(a), determine the directivity
using (2-41) with @, and ¢; of (2-38c) and (2-39¢).

SOLUTION

Again using 18 divisions in each interval, we can write (2-41) as

Py = Bu( ) [2 sin’ qbf] [1:28. sin® .9,]
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with

=
If

< o fi o TYes il 1) 165 i
36“ )185(‘ L

Il
i
2
s
oo

quz_;ﬁ-l*(_]— W —5°+U—1)10°, J=123....18

Because of the symmetry of the divisions about the # = /2 and ¢ = 7/2 angles,
we can write

-l o3 w15 000]

Poi = B(,(l 8) 4[sin® (5°) + sin® (15°) + -« « + sin® (859)]°

9 3 11"2
BU(lS) 4459 = Bu( ) (81) = Bn(4)

which is identical to that of the previous example. Thus
4l s 4m 16
Dy=—"=—— = 5.0929
. .Pmd '?T-f4 wT 0

which again is equal to the exact value!

It is interesting to note that decreasing the number of divisions (M and/or N) to 9, 6,
4, and even 2 leads to the same answer, which also happens to be the exact value!
To demonstrate as to why the number of divisions does not affect the answer for this
pattern, let us refer to Figure 2.16 where we have plotted the sin® ¢ function and
divided the 07 = ¢ = 180° interval into six divisions. The exact value of the directivity
uses the area under the solid curve. Doing the problem numerically, we find the area
under the rectangles, which is shown shaded. Because of the symmetrical nature of
the function. it can be shown that the shaded area in section #1 (included in the
numerical evaluation) is equal to the blank area in section #1' (left out by the
numerical method). The same is true for the areas in sections #2 and #2', and #3
and #3'. Thus, there is a one-lo-one compensation. Similar justification is applicable
for the other number of divisions.

[t should be emphasized that all functions, even though they may contain some
symmetry. do not give the same answers independent of the number of divisions. As
a matter of fact, in most cases the answer only approaches the exact value as the
number of divisions is increased to a large number.

A FORTRAN computer program called DIRECTIVITY has been developed to
compute the maximum directivity of any antenna whose radiation intensity is U =
F(t, ) based on the formulation of (2-43). The intensity function F does not have
to be a function of both # and ¢. The numerical evaluations are made at the trailing
edge. as defined by (2-38b) and (2-39b). The program is included at the end of this
chapter. It contains @ SUBROUTINE for which the intensity factor U = F(#, ¢) for
the required application must be specified by the user. As an illustration, the antenna
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Figure 2.16 Digitized form of sin® ¢ function,

=

intensity U/ = sin 0 sin® ¢ has been inserted in the subroutine. In addition. the up-
per and lower limits of # and ¢ must be specified for each application of the same
pattern.

2.7 GAIN

Another useful measure describing the performance of an antenna is the gain. Al-
though the gain of the antenna is closely related to the directivity. it is a measure that
takes into account the efficiency of the antenna as well as its directional capabilifies.
Remember that directivity is a measure that describes only the directional properties
of the antenna, and it is therefore controlled only by the pattern.

Absolute gain of an antenna (in a given direction) is defined as ““the ratio of the
intensity, in a given direction, to the radiation intensity that would be obtained if the
power accepted by the antenna were radiated isotropically. The radiation intensity
corresponding to the isotropically radiated power is equal to the power accepted
(input) by the antenna divided by 47."" In equation form this can be expressed as

radiation intensity B U(o. o)

T . = 4 (dimensionless) (2-44)
total input (accepted) power Py

gain = 4

In most cases we deal with relarive gain, which is defined as ““the ratio of the
power gain in a given direction to the power gain of a reference antenna in its
referenced direction.’”” The power input must be the same for both antennas. The
reference antenna is usually a dipole, horn, or any other antenna whose gain can be
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Figure 2.17 Reference terminals and losses of
an antenni.

calculated or it is known. In most cases, however, the reference antenna is a lossless
isotropic source. Thus

= AU 0, &)
Py, (lossless isotropic source)

(dimensionless) (2-44a)

When the direction is not stated, the power gain is usually taken in the direction
of maximum radiation.

Referring to Figure 2.17(a), we can write that the total radiated power (P,yg) is
related to the total input power (P,,) by

Py = € Py (2-45)

where ¢, i1s the antenna radiation efficiency (dimensionless) which is defined in
Section 2.14 by (2-90). According to the 1IEEE Standards, “gain does not include
losses arising from impedance mismatches (reflection losses) and polarization mis-
maltches (losses).”” In this edition of the book, we will adhere, in terms of standardi-
zation, to this definition. But in the earlier edition we included both impedance
(reflection) and polarization losses in the definition of the gain. These two losses are
defined, respectively, by the reflection (mismatch) efficiency in (2-51) and (2-52), and
by the polarization loss factor (PLF) in (2-71). Both are very important losses and
they need to be included in the link calculations of a communication system (o
determine the received or radiated power, even if they are not included in the present
definition of gain. Using (2-45) reduces (2-44a) to

U(o. c;fa}]

P (2-46)

G0, ) = B,‘d[‘iﬂ'
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which is related to the directivity of (2-21) by

G(B, QS) = Epd D(et ¢) (2"47:'

In a similar manner. the maximum value of the gain is related to the maximum
directivity by

G{} = G(Q' d’)|m.ﬂ.( = ec‘u’ D(B'f ¢]|mux = t?m: DD (2'474}

As was done with the directivity, we can define the partial gain of an antenna
for a given polarization in a given direction as “‘that part of the radiation intensity
corresponding to a given polarization divided by the total radiation intensity that
would be obtained if the power accepted by the antenna were radiated isotropically,”
With this definition for the partial directivity, then, in a given direction, *‘the total
gain is the sum of the partial gains for any two orthogonal polarizations.”” For a
spherical coordinate system, the total maximum gain G, for the orthogonal ¢ and ¢
components of an antenna can be written, in a similar form as was the maximum
directivity in (2-17)-(2-17b), as

Gn e Gy + G@; (2-48)
while the partial gains G, and G, are expressed as
47U
Gy = — (2-48a)
Pin
4l
Gy = —2 (2-48b)
Pl‘rf
where
U, = radiation intensity in a given direction contained in Ey field component
U/, = radiation intensity in a given direction contained in £, field component
P,, = total input (accepted) power

For many practical antennas an approximate formula for the gain. corresponding
to (2-27) or (2-27a) for the directivity, is

30,000 (2-49)

Gy =
. @Id ®2d

In practice, whenever the term *‘gain’ is used, it usually refers to the meximum
gain as defined by (2-47a).

Usually the gain is given in terms of decibels instead of the dimensionless quantity
of (2-47a). The conversion formula is given by

Gy(dB) = 10 log,gle, Dy (dimensioniessj] (2-50)

2.8 ANTENNA EFFICIENCY

The total antenna efficiency e, is used to take into account losses at the mput terminals
and within the structure of the antenna. Such losses may be due. referring to Figure
2.17(b), to
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1. reflections because of the mismatch between the transmission line and the antenna
2. I’R losses (conduction and dielectric)

In general, the overall efficiency can be written as

Cn = €6y (2“51)

¢, = total efficiency  (dimensionless)

e, = reflection (mismatch) efficiency = (I — [[]") (dimensionless)

¢, = conduction efficiency (dimensionless)

¢, = dielectric efficiency (dimensionless)

I" = voltage reflection coefficient at the input terminals of the antenna [I' =

(Ziy — ZlZy + Zy) where Z,, = antenna input impedance, Z, = char-
acteristic impedance of the transmission line|

Usually e, and e, are very difficult to compute. but they can be determined
experimentally. Even by measurements they cannot be separated, and it is usually
more convenient to write (2-51) as

b = Bt =i€a(l = [T} (2-52)

where ¢,;, = ¢,e¢, = antenna radiation efficiency. which is used to relate the gain and
directivity.

Example 2.8

A lossless resonant half-wavelength dipole antenna, with input impedance of 73 ohms,
is to be connected 1o a transmission line whose characteristic impedance is 50 ohms.
Assuming that the pattern of the antenna is given approximately by

U = Bysin® 6

find the overall maximum gain of this antenna.

SOLUTION
Let us first compute the maximum directivity of the antenna. For this

-Ulmux = Upwe = By

2 T 3 2
B == L ﬁ UGB, ) sin 6.d0 dp = 27B, ﬁ Csin' 9do = By (%)

Uﬂ\ll.\ 16
Dy = dn—— = — = 1.697
T Tl
Since the antenna was stated to be lossless. then the radiation efficiency

e = |
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Thus, the total maximuim gain, as defined in this edition and by IEEE, is equal to

Gy = ey Dy = 1(1.697) = 1.697

GyldB) = 10 logo(1.697) = 2.297
which is identical to the directivity because the antenna is lossless.

There is another loss lactor which is not taken into account in the gain, That is
the loss due to reflection or mismatch losses between the antenna (load) and the
transmission line. This loss is accounted for by the reflection efficiency of (2-51) or
(2-52), and it is equal to

73 — 502
gy ] = (= 1 = il | e R
¢ = (L= [IT) ( 73+50)
e (dB) = 10 log;o(0.965) = —0.155

Thus, the overall efficiency is
ey = ee.y = 0.965

ey (dB) = — 0.155
Thus, the overall losses are equal to (0.155 dB.

The gain in dB can also be obtained by converting the directivity and radiation
efficiency in dB and then adding them. Thus,

e, AdB) = 10 logy, (1.0) = 0

Dy(dB) = 10 logy, (1.697) = 2.297

GyldB) = ¢.,(dB) + Dy (dB) = 2.297

which is the same as obtained previously.

2.9 HALF-POWER BEAMWIDTH

The half-power beannwidth is defined as: “‘ln a plane containing the direction of the
maximum of a beam. the angle between the two directions in which the radiation
intensity is one-half the maximum value of the beam.”” Often the term beamwidth is
used to describe the angle between any two points on the pattern, such as the angle
between the 10-dB points. In this case the specific points on the pattern must be
described to avoid confusion. However the term beamwidth by itself is usually re-
versed to describe the 3-dB beamwidth.

The beamwidth of the antenna is a very important figure-of-merit. and it often
used to as a tradeoff between it and the sidelobe level: that is. as the beamwidth
decreases the sidelobe increases and vice versa. In addition, the beamwidth of the
antenna is also used to describe the resolution capabilities of the antenna to distinguish
between two adjacent radiating sources or radar targets. The most common resolution
criterion states that the resolution capability of an antenna to distinguish between (wo
sources is equal to half the first null beamwidth (FNBW/2), which is usually used to
approximate the half-power beamwidth (HPBW) 7], [12]. That is. two sources sep-
arated by angular distances equal or greater than FNBW/2 = HPBW of an antenna
with a uniform distribution can be resolved. If the separation is smaller, then the
antenna will tend to smooth the angular separation distance.
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2.10 BEAM EFFICIENCY

Another parameter that is frequently used to judge the quality of transmitting and
receiving antennas is the beam efficiency. For an antenna with its major lobe directed
along the z-axis (6 = 0), as shown in Figure 2.4(a), the beam efficiency (BE) is
defined by

_ power transmitted (received) within cone angle #,
power transmitted (received) by the antenna

BE

(dimensionless) (2-53)

where 6, is the half-angle of the cone within which the percentage of the total power
is to be found. Equation (2-53) can be written as

2r '8
J f“ U0, ¢) sin 0 d6 d
]

B

E = 2w w (2154)
J:n ﬁ. U0, ) sin 0 dB dp

If ), is chosen as the angle where the first null or minimum occurs (see Figure 2.4),
then the beam efficiency will indicate the amount of power in the major lobe compared
to the total power. A very high beam efficiency (between the nulls or minimums),
usually in the high 90s. is necessary for antennas used in radiometry. astronomy.
radar, and other applications where received signals through the minor lobes must be
minimized. The beam efficiencies of some typical circular and rectangular aperture
antennas will be discussed in Chapter 12.

2.11 BANDWIDTH

The bandwidth of an antenna is defined as “‘the range of frequencies within which
the performance of the antenna, with respect to some characteristic, conforms to a
specified standard.”” The bandwidth can be considered to be the range of frequencies.
on either side of a center frequency (usually the resonance frequency for a dipole).
where the antenna characteristics (such as input impedance, pattern, beamwidth, po-
larization, side lobe level. gain. beam direction, radiation efficiency) are within an
acceptable value of those at the center frequency. For broadband antennas, the band-
width is usually expressed as the ratio of the upper-to-lower frequencies of acceptable
operation. For example, a 10 : | bandwidth indicates that the upper frequency is 10
times greater than the lower. For narrowband antennas, the bandwidth is expressed
as a percentage of the frequency difference (upper minus lower) over the center
frequency of the bandwidth. For example, a 5% bandwidth indicates that the frequency
difference of acceptable operation is 5% of the center frequency of the bandwidth.
Because the characteristics (input impedance, pattern. gain, polarization, etc.) of
an antenna do not necessarily vary in the same manner or are even critically affected
by the frequency. there is no unique characterization of the bandwidth. The specifi-
cations are set in each case to meet the needs of the particular application. Usually
there is a distinction made between pattern and input impedance variations. Accord-
ingly pattern bandwidth and impedance bandwidih are used to emphasize this dis-
tinction. Associated with pattern bandwidth are gain, side lobe level. beamwidth,
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polarization, and beam direction while input impedance and radiation efficiency are
related to impedance bandwidth. For example, the pattern of a linear dipole with
overall length less than a half-wavelength (1 < A/2) is insensitive to frequency. The
timiting factor for this antenna is its fmpedance, and its bandwidth can be formulated
in terms of the Q. The @ of antennas or arrays with dimensions large compared to
the wavelength, excluding superdirective designs, is near unity. Therefore the band-
width is usually formulated in terms of beamwidth, side lobe level, and pattern
characteristics, For intermediate length antennas, the bandwidth may be limited by
either pattern or impedance variations, depending upon the particular application. For
these antennas, a 2 : 1 bandwidth indicates a good design. For others, large bandwidths
are needed. Antennas with very large bandwidths (like 40 : 1 or greater) have been
designed in recent years. These are known as frequency independent antennas, and
they are discussed in Chapter 11.

The above discussion presumes that the coupling networks (transformers, baluns.
elc.) and/or the dimensions of the antenna are not altered in any manner as the
frequency is changed. It is possible to increase the acceptable frequency range of a
narrowband antenna if proper adjustments can be made on the critical dimensions of
the antenna and/or on the coupling networks as the frequency is changed. Although
not an easy or possible task in general, there are applications where this can be
accomplished. The most common examples are the antenna of a car radio and the
“‘rabbit ears’" of a television. Both usually have adjustable lengths which can be used
to tune the antenna for better reception.

2.12 POLARIZATION

Polarization of an anienna in a given direction is defined as *“the polarization of the
wave transmitted (radiated) by the antenna. Note: When the direction is not stated,
the polarization is taken to be the polarization in the direction of maximum gain.”" In
practice, polarization of the radiated energy varies with the direction from the center
of the antenna, so that different parts of the pattern may have different polarizations.

Polarization of a radiated wave is defined as “‘that property of an electromagnetic
wave describing the time varying direction and relative magnitude of the electric-field
vector; specifically, the figure traced as a function of time by the extremity of the
vector al a fixed location in space, and the sense in which it is traced, as observed
along the direction of propagation.”” Polarization then is the curve traced by the end
point of the arrow representing the instantaneous electric field. The field must be
observed along the direction of propagation. A typical trace as a function of time is
shown in Figures 2.18(a) and (b).

The polarization of a wave can be defined in terms of a wave radiated (trans-
mitted) or received by an antenna in a given direction. The polarization of a wave
radiated by an antenna in a specilied direction at a point in the far field is defined as
“the polarization of the (locally) plane wave which is used to represent the radiated
wave at that point. At any point in the far field of an antenna the radiated wave can
be represented by a plane wave whose electrie field strength is the same as that of the
wave and whose direction of propagation is in the radial direction from the antenna.
As the radial distance approaches infinity, the radius of curvature of the radiated
wave's phase front also approaches infinity and thus in any specified direction the
wave appears locally as a plane wave.”" This is a far-field characteristic of waves
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(a) Rotation of wave
&k

Eyp

OR

Major axis Minor axis

(b) Polarization ellipse

Figure 2.18 Rotation of a plane electromagnetic
wave and its polarization ellipse at z = 0 as a function
of time.

radiated by all practical antennas. and it is illustrated analytically in Section 3.6 of
Chapter 3. The polarization of a wave received by an antenna is defined as the
“polarization of a plane wave. incident from a given direction and having a given
power flux density. which results in maximum available power at the antenna termin-
als.””

Polarization may be classified as linear, circular. or elliptical. If the vector that
describes the electric field at a point in space as a function of time is always directed
along a line, the ficld is said to be linearly polarized. In general. however, the figure
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that the eleetric field traces is an ellipse, and the field is said to be elliptically polarized.
Linear and circular polarizations are special cases of elliptical, and they can be
obtained when the ellipse becomes a straight line or a circle. respectively. The figure
of the electric field is traced in a clockwise (CW) or counterclockwise (CCW) sense.
Clockwise rotation of the electric field vector is designated as right-hand polarization
and counterclockwise as left-hand polarization.

In general, the polarization characteristics of an antenna can be represented by
its polarization pattern whose one definition is *‘the spatial distribution of the polar-
izations of a field vector excited (radiated) by an antenna taken over its radiation
sphere. When describing the polarizations over the radiation sphere, or portion of it,
reference lines shall be specified over the sphere, in order to measure the tilt angles
(see tilt angle) of the polarization ellipses and the direction of polarization for linear
polarizations. An obvious choice, though by no means the only one, is a family of
lines tangent at each point on the sphere to either the # or ¢ coordinate line agsociated
with a spherical coordinate system of the radiation sphere. At each point on the
radiation sphere the polarization is usually resolved into a pair of orthogonal polari-
zations, the co-polarization and cross polarization. To accomplish this, the co-polar-
ization must be specified at each point on the radiation sphere.™

“‘For certain linearly polarized antennas, it is common practice to define the co-
polarization in the following manner: First specify the orientation of the co-polar
electric field vector at a pole of the radiation sphere. Then, for all other directions of
interest (points on the radiation sphere), require that the angle that the co-polar electric
ficld vector makes with each great circle line through the pole remain constant over
that circle, the angle being that at the pole.™

““In practice, the axis of the antenna’s main beam should be directed along the
polar axis of the radiation sphere. The antenna is then appropriately oriented about
this axis to align the direction of its polarization with that of the defined co-polarization
at the pole.”” **This manner of defining co-polarization can be extended to the case
of elliptical polarization by defining the constant angles using the major axes of the
polarization ellipses rather than the co-polar electric field vector. The sense of polar-
ization (rotation) must also be specified.™

The polarization of the wave radiated by the antenna can also be represented on
the Poincaré sphere [7], [13]-[16]. Each point on the Poincaré sphere represents a
unique polarization. The north pole represents left circular polarization. the south pole
represents right circular, and points along the equator represent linear polarization of
different tilt angles. All other points on the Poincaré sphere represent elliptical polar-
ization. For details, see Figure 16.24 of Chapter 16.

The polarization of an antenna is measured using techniques described in Chapter
16.

2.12.1 Linear, Circular, and Elliptical Polarizations

The instantaneous field of a plane wave. traveling in the negative z direction, can be
written as

Elzt) = 4% (a0 + aé(z1) (2-55)

According to (2-5), the instantaneous components are related to their complex counter-
parts by
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%.\'-(Z; !) i REIE‘_-EJH»:H&:Jl = Rc[E‘:ﬂeﬁmHfc:+-.¢)‘-;:]

= E cos(wr + kz + o) (2-56)
%‘\-(32 1) = RelE,~ el 1--&:.!] = Re[ E;w,e-"'“‘”“L ke + .1_.’\.)-{

= Eycos(wt + kz + ) (2-57)

where E,, and E,, are, respectively. the maximum magnitudes of the x and v com-
ponents.

A. Linear Polarization

For the wave to have linear polarization, the time-phase difference between the two
components must he

Ap = ¢y — &, = nm, e D) TR R (2-58)

B. Circular Polarization

Circular polarization can be achieved onlv when the magnitudes of the two compo-
nents are the same and the time-phase difference between them is odd multiples of
/2. That is,

8] = [, = By = E, (2-59)
+G 4+ 2m)mn=0,1,2,... forCW (2-60)
b=y ="y = (4 + 2mmn=0,1,2,... for CCW (2-61)

If the direction of wave propagation is reversed (i.e.. +z direction), the phases in
(2-60) and (2-61) for CW and CCW rotation must be interchanged,

C. Elliptical Polarization

Elliptical polarization can be attained only when the time-phase difference between
the two components is odd multiples of 7/2 and their magnitudes are not the same
or when the time-phase difference between the two components is not equal to
multiples of 7/2 (irrespective of their magnitudes). That is.

|l£.\'| o icé;,\'l =2 E, #F Eyr;

when Adp = ¢, — ¢, = [+ & + 2wy for CW (2-62a)
=0 L3 | = G+ 20 for CEW (2-62b)
or
i
Ap =y — ¥ % 3= (>0 forCW (2-63)
n=10 12 3... | =<0 forCCW (2-64)

For elliptical polarization, the curve traced at a given position as a function of
time is, in general, a tilted ellipse, as shown in Figure 2,18(b). The ratio of the major
axis to the minor axis is referred to as the axial ratio (AR), and it is equal to

major axis  OA

AR = — == ==
minor axis OB

l=AR==% (2-65)
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where

OA = [{{E:, + B3, + |E}, + Ej, + 2E5, E, cosQAP)"1]'®  (2-66)
OB = [L{E, + E}, — |EL, + Ej, + 2E%, E}, cosQAD)) 3] (2-67)

The tilt of the ellipse, relative to the v axis, is represented by the angle T given by

l ZEYI"’E\JT]
o gy T R
2 2 E‘_.;r_, - E;.-.:

cos{_A(_b)] (2-68)

When the ellipse is aligned with the principal axes [T = n@/2.n = (0. 1,2, .. .].
the major (minor) axis is equal to £, (E,,) or E,(E,,) and the axial ratio is equal to
E/Ey, or Ey,/E

s

SUMMARY

We will summarize the preceding discussion on polarization by stating the general
characteristics, and the necessary and sufficient conditions that the wave must have
in order to possess linear, circular or elliptical polarization.

Linear Polarization A time-harmonic wave is linearly polarized at a given point in
space if the electric field (or magnetic freld) vector at that point is alwavs oriented
along the same straight line at every instant of time. This is accomplished if the field
vector (electric or magnetic) possesses:

a.  Only one component, or

b.  Two orthogonal linear components that are in time phase or 180° (or multiples
of 180°) out of phase.

Circular Polarization A time-harmonic wave is circularly polarized at a given point
in space if the electric (or magnetic) field vector at that point traces a circle as a
Junction of time.

The necessary and sufficient conditions to accomplish this are if the field vector
(electric or magnetic) possesses all of the following:

a.  The field must have two orthogonal linear components, and
b.  The two components must have the same magnitude, and
¢. The two components must have a time-phase difference of odd multiples of 90°,

The sense of rotation is always determined by rotating the phase-leading component
toward the phase-lagging component and observing the field rotation as the wave is
viewed as it travels away from the observer. If the rotation is clockwise, the wave is
right-hand (or clockwise) circularly polarized; if the rotation is counterclockwise, the
wave iy left-hand (or counterclockwise) circularly polarized. The rotation of the phase-
leading component toward the phase-lagging component should be done along the
angular separation between the two components that is less than 180°. Phases equal
to or greater than O° and less than 180° should be considered leading whereas those
equal 1o or greater than [80° and fess than 360° should be considered lagging.

Elliptical Polarization A time-harmonic wave is elliptically polarized if the tip of the
Jield vector (electric or magnetic) traces an elliptical locus in space. At various
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instants of time the field vector changes continuously with time at such a manner as
to describe an elliptical locus. It is right-hand (clockwise) elliptically polarized if the
Jield vector rotates clockwise, and it is left-hand (counterclockwise) elliptically po-
larized if the field vector of the ellipse rotates counterclockwise [13]. The sense of
rotation is determined using the same rules as for the circular polarization. In addition
to the sense of rotation, elliptically polarized waves are also specified by their axial
ratio whose magnitude is the ratio of the major to the minor axis.

A wave is elliptically polarized if it is not linearly or circularly polarized. Although
linear and circular polarizations are special cases of elliptical. usually in practice
elliptical polarization refers to other than linear or circular. The necessary and suffi-
cient conditions to accomplish this are if the field vector (electric or magnetic) pos-
sesses all of the following:

a. The field must have two orthogonal linear components, and
The two components can be of the same or different magnitude.

c. (1) If the two components are not of the same magnitude, the time-phase differ-
ence between the two components must not be 0° or multiples of 180° (because
it will then be linear). (2) If the two components are of the same magnitude, the
time-phase difference between the two components must not be odd multiples of
90? (because it will then be circular).

It the wave is elliptically polarized with two components not of the same mag-
nitude but with odd multiples of 90° time-phase difference. the polarization ellipse
will not be tilted but it will be aligned with the principal axes of the field components.
The major axis of the ellipse will align with the axis of the field component which is
larger of the two. while the minor axis of the ellipse will align with the axis of the
field component which 1s smaller of the two.

2.12.2 Polarization Loss Factor and Efficieney

In general, the polarization of the receiving antenna will not be the same as the
polarization of the incoming (incident) wave. This is commonly stated as *“polarization
mismatch.” The amount of power extracted by the antenna from the incoming signal
will not be maximum because of the polarization loss. Assuming that the electric field
of the incoming wave can be written as

E, = p. E (2-69)

where f,, is the unit vector of the wave, and the polarization of the electric field of
the receiving antenna can be expressed as

E:J = ﬁﬂ Eﬂ (:’—'?U)

where @, is its unit vector (polarization vector), the polarization loss can be taken into
account by introducing a pelarization loss factor (PLF). It is defined, based on the
polarization of the antenna in its transmitting mode, as

PLF = |p, - p.l" = * (dimensionless) (2-71)

cos s,

where ify, is the angle between the two unit vectors. The relative alignment of the
polarization of the incoming wave and of the antenna is shown in Figure 2.19. If the
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" Figure 2.19 Polarization unit vectors of incident wave (f,)
| » and antenna (), and polarization loss factor (PLF).

antenna is polarization matched, its PLF will be unity and the antenna will extract
maximum power from the incoming wave.

Another figure-of-merit that is used to describe the polarization characteristics of
a wave and that of an antenna is the pelarization efficiency (polarization mismatch or
loss factor) which is defined as **the ratio of the power received by an antenna from
a given plane wave of arbitrary polarization to the power that would be received by
the same antenna from a plane wave of the same power flux density and direction of
propagation, whose state of polarization has been adjusted for a maximum received
power.”” This is similar 1o the PLF and it is expressed as

B ]{;o . Einc|2

= = (2-71a)
leE|21EmL1~

Pe

where

{, = veclor effective length of the antenna
£ = incident electric field

The vector effective length £, of the antenna has not yet been defined, and it is
introduced in Section 2.15, It is a vector that describes the polarization characteristics
of the antenna. Both the PLF and p, lead to the same answers.

The conjugate (*) is not used in (2-71) or (2-71a) so that a right-hand circularly
polarized incident wave (when viewed in its direction of propagation) is matched to
right-hand circularly polarized receiving antenna (when its polarization is determined
in the transmitting mode). Similarly, a left-hand circularly polarized waye will be
matched to a left-hand circularly polarized antenna,

To illustrate the principle of polarization mismatch, two examples will be consid-
ered.

Example 2.9
The electric field of a linearly polarized electromagnetic wave given by
E, = 8.Eylx, y)e s

is incident upon a linearly polarized antenna whose electric field polarization can be
expressed as

E, = (4, + 4)E(, 6. ¢)

Find the polarization loss factor (PLF).
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SOLUTION
For the incident wave
b = 4,

and for the antenna

1
p, = —= (4, + 4
pf.l' \//i(al _v}

The PLF is then equal to

Pl = Iijw g ﬁ\(l|2 2 |ﬁl E

Fadf—

!
—= (@&, +a)P =
\/E ' ')|
which in dB is equal to

PLF(dB) = 10 log,y PLF(dimensionless) = 10 logyy (0.5) = —3

Even though in Example 2.9 both the incoming wave and the antenna are linearly
polarized. there is a 3-dB loss in extracted power because the polarization of the
incoming wave is not aligned with the polarization of the antenna. If the polarization
of the incoming wave is orthogonal to the polarization of the antenna, then there will
be no power extracted by the antenna from the incoming wave and the PLF will be
zero or — dB. In Figures 2.20(a,b) we illustrate the polarization loss factors (PLF)
of two types of antennas; wires and apertures.

We now want to consider an example where the polarization of the antenna and
the incoming wave are described in terms of complex polarization vectors.

Example 2.10

A wave radiated by an antenna is traveling in the outward radial direction along the
+ 2 axis. Its radiated field in the far-zone region is described by its spherical com-
ponents, and its polarization is right-hand (clockwise) circularly polarized. This ra-
diated field is impinging upon a receiving antenna whose polarization (in the trans-
mitting mode, which is the mode the antenna polarization should always be specified
according to the definition of IEEE) is also right-handed (clockwise) circularly polar-
ized and whose polarization unit vector is represented by

Ett — (ﬁ‘q " jﬁ,ﬁ)E(f‘. 8. (b)

Determine the polarization loss factor (PLF).

SOLUTION

The polarization of the right-hand circularly polarized wave traveling along the +z
axis is described by the unit vector

ﬁ = (59 o fa@)

V2
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PLF= |$w°au|2"‘ l PLF = |6...-Apﬂla'=i:ﬂ$;'@fb PLF = |aw'ﬁull=0
(aligned) (rotated) forthogonal)

() PLE for transmitting and receiving
apertitie antends

-

\,
\
N
Plf:l.ﬁll'.aulzzl P]_.F=|a“,'§ﬂ|2={:082wp PLF:'BN-ﬁiTP:D
(aligned) (rotated) torthogonal)y

(b1 PLEF for transmitting and receiving
linear wire antennas

Figure 2.20 Polarization loss factors (PLF) for aperture and linear wire antennas,

while that of the antenna is represented by the unit vector
= ( ay — fﬁcb)
i ‘\/E
Therefore the polarization loss factor is
2 1 2
PLE = [ppuf = 7|1 + 1P =1 =0dB
Since the polarization of the incoming wave matches (including the sense of rotation)

the polarization of the receiving antenna, there should not be any losses. Obviously
the answer matches the expectation.

Based upon the definitions of the wave transmitted and received by an antenna,
the polarization of an antenna in the receiving mode is related to that in the trans-
mitting mode as follows:

1. “‘In the same plane of polarization, the polarization ellipses have the same axial
ratio, the same sense of polarization (rotation) and the same spatial orientation.
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2. *'Since their senses of polarization and spatial orientation are specified by viewing
their polarization ellipses in the respective directions in which they are propagat-
ing, one should note that:

a. Although their senses of polarization are the same, they would appear to be
opposite if both waves were viewed in the same direction.

b. Their tilt angles are such that they are the negative of one another with
respect to a common reference.”

Since the polarization of an antenna will almost always be defined in its trans-
milting mode. according to the IEEE Std 145-1983, “‘the receiving polarization may
be used to specify the polarization characteristic of a nonreciprocal antenna which
may transmit and receive arbitrarily different polarizations."

The polarization loss must always be taken into account in the link calculations
design of a communication system because in some cases it may be a very critical
factor. Link calculations of communication systems for outer space explorations are
very stringent because of limitations in spacecraft weight. In such cases, power is a
limiting consideration. The design must properly take into account all loss factors 1o
ensure a successtul operation of the system.

2.13 INPUT IMPEDANCE

Input impedance is defined as **the impedance presented by an antenna at its terminals
or the ratio of the voltage to current at a pair of terminals or the ratio of the appropriate
components of the electric to magnetic fields at a point.”” In this section we are
primarily interested in the input impedance at a pair of terminals which are the input
terminals of the antenna. In Figure 2.2 (a) these terminals are designated as a—b. The
ratio of the voltage to current at these terminals, with no load attached. defines the
impedance of the antenna as

Zy = Ry + jX,u (2-72)

where

Zy = antenna impedance al terminals a—#  (ohms)
Ry = antenna resistance at terminals a—b  (ohms)
X, = antenna reactance at terminals g—hH  (ohms)

In general the resistive part of (2-72) consists of two components; that is

R, =R, + R, (2-73)

R, = radiation resistance of the antenna

R; = loss resistance of the antenna
The radiation resistance will be considered in more detail in later chapters, and it will
be illustrated with examples,
If we assume that the antenna is attached to a generator with internal impedance

Z, = R, + jX, (2-74)
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Antenna /

a

TS S,

Radiated
wave

h

ta) Antennain transmitting mode

r,“T 5 ﬁ@

p o

(¢) Norton equivalent

Figure 2.21 Transmitting antenna and its equivalent cir-
cuits,

where

R, = resistance of generator impedance (ohms)
X, = reactance of generator impedance (ohms)

and the antenna is used in the transmitting mode, we can represent the antenna and
generator by an equivalent circuit® shown in Figure 2.21(b). To find the amount of
power delivered to R, for radiation and the amount dissipated in R, as heat (I°R,/2),
we first find the current developed within the loop which is given by
Vi V, Ve

I&'=-é=

Z, Zy+Z, (R + R+ R+ jXy+X)

(A) (2-75)

F1his circuit can be used to represent small and simple antennas, It cannol be used lor antennas with
lossy dielectric or antennas over lossy ground because their loss resistance cannot be represented in series
with the radiation resistance.
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and its magnitude by

Vil -

L| = - ’ - (2-75a)
4 (R + R+ RY + Xy + X))

where V, is the peak generator voltage. The power delivered to the antenna for
radiation is given by

P 5 V. J? R, |
P.==1PR =& - A
g R 2 [(R,. + Ry + R + (X + X)) | Ve~ )

and that dissipated as heat by
Vil Ry I
2 |R+Rp+ B+ &+ X))

The remaining power is dissipated as heat on the internal resistance R, of the generator,
and it is given by

[V l* R,
== 3 3 -7
Py 2 LK.+ R + R+ X4 = X (0 (R578)

The maximum power delivered to the antenna occurs when we have conjugate
matching; that is when

(W) (2-77)

L.
Py =2 |LfR =

R+ R, =R, (2-79)
Xy = —X, (2-80)
For this case
[Vl R, V[ R,
P, = . =| = - -81
! 2 4R, + R 8 [(R, + R ol
|V, J? R, .
p=t | —— 2-
I 3 | (R, + R (2-82)
I 17 "R O 7 il O S O 1/ ;
Re 8 [mr 3 R;_F] 8 |R + R, 8R, e

From (2-81)-(2-83), it is clear that

v R, VP R +R
szP,+P;_=|R|’: i ]=|"|[ L] (2-84)

8 (R_;- + R;,F 8 (Rr 512 RL.'IE
The power supplied by the generator during conjugate matching is
I I Vv, *# |V, I _
P T s . & = & W 2_
T2 Vel® =35 Vs [2(1?, + RL)jI 4 |R, + R, L

Of the power that is provided by the generator, half is dissipated as heat in the internal
resistance (R,) of the generator and the other half is delivered to the antenna. This
only happens when we have conjugate matching. Of the power that is delivered to
the antenna. part is radiated through the mechanism provided by the radiation resis-
tance and the other is dissipated as heat which influences part of the overall efficiency
of the antenna. If the antenna is lossless (e, = 1), then half of the total power supplied
by the generator is radiated by the antenna during conjugate matching, and the other
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half is dissipated as heat in the generator. Thus, to radiate hall of the available power
through R, you must dissipate the other half as heat in the generator through R,,. These
two powers are. respectively, analogous to the power transferred to the load and the
power scattered by the antenna in the receiving mode. In Figure 2.21 it is assumed
that the generator is directly connected o the antenna. If there is a a transmission line
between the two, which is usually the case, then Z, represents the equivalent impe-
dance ol the generator translerred to the input terminals of the antenna using the
impedance transfer equation. If, in addition, the transmission line is lossy, then the
available power to be radiated by the antenna will be reduced by the losses of the
transmission line. Figure 2.21(¢) illustrates the Norton equivalent of the antenna and
its source in the transmitting mode.

The use of the antenna in the receiving mode is shown in Figure 2.22(a). The
incident wave impinges upon the antenna, and it induces a voltage Vo, which is
analogous to V, of the transmitting mode. The Thevenin equivalent circuit of the
antenna and its load is shown in Figure 2.22(b) and the Norton equivalent in Figure
2.22(c). The discussion for the antenna and its load in the receiving mode parallels
that for the transmitting mode, and it will not be repeated here in detail. Some of the
results will be summarized in order to discuss some subtle points. Following a pro-
cedure similar to that for the antenna in the transmitting mode, it can be shown using
Figure 2.22 that in the receiving mode under conjugate matching (R, + R, = Ry and

X, = —Xy) the powers delivered to Ry, R,. and R, are given, respectively, by
Vol Ry Vel {1 Vo
Py = L2 2| =l ( -l (2-86)
8 [(R.+ Ry 8§ \R, + R, 8Ry
|Vl R, Vaf? R,
P = - | = = 2-87
' 2 | 4UR, + R))” 8 [ (R, + Ry { j
Vi’ Ry :
P . - 9 2_
T8 LR+ R i

while the induced (collected or captured) is

o Vi er:( 1
Vo lE = -V = 2-89
et 2 r|:2(Rr + R!,):| 4 Rr -+ R.‘., { s ]

These are analogous, respectively, to (2-81)-(2-83) and (2-85). The power P, of
(2-87) delivered to R, is referred to as scattered (or reradiated) power. It is clear
through (2-86)~(2-89) that under conjugate matching of the total power collected or
captured [P, of (2-89)] half is delivered to the load Ry [Py of (2-86)] and the other
half is scattered or reradiated through R, [P, of (2-87)] and dissipated as heat through
R, [P, of (2-88)]. If the losses are zero (R, = 0), then half of the captured power is
delivered to the load and the other half is scattered. This indicates that in order to
deliver half of the power to the load you must scatter the other half. This becomes
important when discussing effective equivalent areas and aperture elficiencies. espe-
cially for high directivity aperture antennas such as wave guides, horns, and reflectors
with aperture efficiencies as high as 80 to 90%. Aperture efficiency (e,,) is defined
by (2-100) and is the ratio of the maximum effective area to the physical area, The
effective area is used to determine the power delivered to the load, which under
conjugate matching is only one half of that intercepted; the other half is scattered and
dissipated as heat. For a lossless antenna (R, = 0) under conjugate maltching, the
maximum value of the effective area is equal to the physical area (€, = 1) and the

P.:

[

[ =
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Figure 2.22 Antenna and its equivalent circuits in the
receiving mode.

scattering area is also equal to the physical area. Thus half of the power is delivered
to the load and the other half is scattered, Using (2-86) to (2-89) we conclude that
even though the aperture efficiencies are higher than 50% (they can be as large as
100%) all of the power that is captured by the antenna is not delivered to the load but
it includes that which is scattered plus dissipated as heat by the antenna. The most
that can be delivered to the load is only half of that captured and that is only under
conjugate matching and lossless transmission line.

The input impedance of an antenna is generally a function of frequency. Thus the
antenna will be matched to the interconnecting transmission line and other associated
equipment only within a bandwidth. In addition, the input impedance of the antenna
depends on many factors including its geometry, its method of excitation, and its
proximity to surrounding objects. Because of their complex geometries. only a limited
number of practical antennas have been investigated analytically. For many others,
the input impedance has been determined experimentally.
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2.14 ANTENNA RADIATION EFFICIENCY

The antenna efficiency that takes into account the reflection, conduction, and dielectric
losses was discussed in Section 2.8. The conduction and dielectric losses of an antenna
are very difficult to compute and in most cases they are measured. Even with meas-
urements. they are difficult to separate and they are usually lumped together to form
the ¢, efficiency. The resistance R, is used to represent the conduction-dielectric
losses.

The conduction-dielectric efficiency e, is defined as the ratio of the power deliv-
ered to the radiation resistance R, to the power delivered to R, and R,. Using (2-76)
and (2-77). the radiation efficiency can be written as

Cog = = (dimensionless) (2-90)
R, + R,

For a metal rod of length [ and uniform cross-sectional area A. the dc resistance
is given by

Ry = —_i (ohms) (2-90a)
aA
If the skin depth 8[6 = \/2/wpeer)] of the metal is very small compared to the
smallest diagonal of the cross section of the rod, the current is confined 1o a thin layer
near the conductor surface. Therefore the high-frequency resistance can be written,
based on a uniform current distribution, as

_tn 1 e :
Ry = PR" =5l 90 (ohms) (2-90b)

where P is the perimeter of the cross section of the rod (P = € = 2b for a circular
wire of radius b), R, is the conductor surface resistance, w is the angular frequency,
(o is the permeability of free-space, and o is the conductivity of the metal.

Example 2.11

A resonant half-wavelength dipole is made out of copper (o = 5.7 X 107 S/m) wire.
Determine the conduction-dielectric (radiation) efficiency of the dipole antenna at
f = 100 MHz if the radius of the wire b is 3 X 10 *A, and the radiation resistance
of the A/2 dipole is 73 ohms.

SOLUTION
Atf = 10° Hz
v 3 x 10
A===—0—=
00 m
A3
f = = T}
e
C=2mb=72m3 X 107 A = 67X 107*A
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For a A/2 dipole with a sinusoidal current distribution R, = 1Ry where Ry is given
by (2-90b). See Problem 2.44., Therefore,

8 -7
R = %R"f " 6w [:f?u 1 \/ W“OS?{;I;: To‘*!o ' = 0349 ohms
Thus.
: Wi
¢4 (dimensionless) = 73 1 0349 = 0.9952 = 99.52%

e.q (dB) = 10 log,((0.9905) = —0.02

2.15 ANTENNA VECTOR EFFECTIVE LENGTH
AND EQUIVALENT AREAS

An antenna in the receiving mode. whether it is in the form of a wire, horn, aperture,
array. dielectric rod. etc., is used to capture (collect) electromagnetic waves and to
extract power from them, as shown in Figures 2.23(a) and (b). For each antenna, an
equivalent length and a number of equivalent areas can then be defined.

These equivalent quantities are used to describe the receiving characteristics of
an antenna, whether it be a linear or an aperture type. when a wave is incident upon
the antenna,

2.15.1 Vector Effective Length

The effective length of an antenna, whether it be a linear or an aperture antenna, is i
quantity that is used to determine the voltage induced on the open-circuit terminals
of the antenna when a wave impinges upon it. The vector effective length €, for an
antenna is usually a complex vector quantity represented by

(’M- ‘f’} = ﬁulﬁ( U~ (,‘b,'l + ﬁdﬂ’(b{lau ﬁb) 12'9”

It should be noted that it is also referred to as the e¢ffective height. 1t is a far-field
quantity and it is related to the far-zone field E, radiated by the antenna, with current
I, in its terminals, by [13]-[ 18]

oo BB
E, = 8,E + 84Ey = —jn— €e (2-92)
4r
The effective length represents the antenna in its transmitting and receiving modes,
and it is particularly useful in relating the open-circuit voltage V,,. of receiving anten-
nas. This relation can be expressed as

Vv

o

=E-¢ (2-93)

where

V,. = open-circuil voltage at antenna terminals
Ef
£, = vector effective length

incident electric field
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Figure 2.23  Uniform plane wave incident upon dipole and aperture an-
tennas,

In (2-93) V,, can be thought of as the voltage induced in a linear antenna of length
1 = €, when ¢, and E' are linearly polarized [19],[20]. From the relation of
(2-93) the effective length of a linearly polarized antenna receiving a plane wave in
a given direction is defined as **the ratio of the magnitude of the open-circuit voltage
developed at the terminals of the antenna to the magnitude of the electric field strength
in the direction of the antenna polarization. Alternatively, the effective length is the
length of a thin straight conductor oriented perpendicular to the given direction and
parallel to the antenna polarization, having a uniform current equal to that at the
antenna terminals and producing the same far-field strength as the antenna in that
direction.™

In addition, as shown in Section 2.12.2, the antenna vector effective length is
used to determine the polarization efficiency of the antenna. To illustrate the usefulness
of the vector effective length, let us consider an example,
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Example 2.12

The far-zone field radiated by a small dipole of length / << A/10 and with a triangular
current distribution, as shown in Figure 4.3, is derived in Section 4.3 of Chapter 4
and it is given by (4-36a), or

k‘(fni i i
E, = ﬁ,,jn—gg— sin 0
Tr

Determine the vector effective length of the antenna.

SOLUTION
According to (2-92), the vector effective length is

[
€ = —Aa,—g 6
4 8y 5 sin

This indicates, as it should, that the effective length is a function of the direction
angle @, and its maximum occurs when 6 = 90° This tells us that the maximum
open-circuit voltage at the dipole terminals occurs when the incident direction of the
wave of Figure 2.23(a) impinging upon the small dipole antenna is normal to the axis
(length) of the dipole (# = 90°). This is expected since the dipole has a radiation
pattern whose maximum is in the # = 90°. In addition, the effective length of the
dipole to produce the same output open-circuit voltage is only half (50%) of its
physical length if it were replaced by a thin conductor having a uniform current
distribution (it can be shown that the maximum effective length of an element with
an ideal uniform current distribution is equal to its physical length).

2.15.2 Antenna Equivalent Areas

With each antenna, we can associate a number of equivalent areas. These are used to
describe the power capturing characteristics of the antenna when a wave impinges on
it. One of these equivalent areas is the effective area (aperture), which in a given
direction is defined as *‘the ratio of the available power at the terminals of a receiving
antenna to the power flux density of a plane wave incident on the antenna from that
direction, the wave being polarization matched to the antenna, If the direction is not
specified, the direction of maximum radiation intensity is implied.”” In equation form
it is written as

B Ry2

= b2 2.
By = oy (2-94)

f

A, = effective area (effective aperture) (m°)
Py = power delivered to the load (W)
W, = power density of incident wave (W/m®)



82 Chapter 2 Fundamental Parameters of Antennas

The effective aperture is the area which when multiplied by the incident power
density gives the power delivered to the load. Using the equivalent of Figure 2.22.
we can wrile (2-94) as

_ Vil Ry
C2W (R + R, + Ry 4 (X, + Xp)P

A (2-95)

Under conditions of maximum power transfer (conjugate matching), R, + R, = Ry

and X, = — X, the effective area of (2-95) reduces to the maximum effective aperture
given by
v, 12 R v, 1
Arm = l rl L ] S | !| (2'96}
BW, | (R, + R, 8W, | R, + R,

When (2-96) is multiplied by the incident power density, it leads to the maximum
power delivered to the load of (2-86).

All of the power that is intercepted. collected, or captured by an antenna is not
delivered to the load, as we have seen using the equivalent circuit of Figure 2.22, In
fact. under conjugate matching only half of the captured power is delivered to the
load; the other half is scattered and dissipated as heat. Therefore to account for the
scattered and dissipated power we need to define, in addition to the effective area. the
scattering, loss and caprure equivalent areas. In equation form these can be defined
similarly to (2-94)—(2-96) for the effective area.

The scattering area is defined as the equivalent arca when multiplied by the
incident power density is equal to the scattered or reradiated power. Under conjugate
matching this is written. similar to (2-96), as

& iV &y (2-97)
CO8W LR+ R

which when multiplied by the incident power density gives the scattering power of
(2-87).

The loss area is defined as the equivalent area. which when multiplied by the
incident power density leads to the power dissipated as heat through R;. Under
conjugate matching this is writlen, similar to (2-96), as

\Zih R,
A, = - 2-98
Eoaw, [ (R, + R hesa)

which whem multiplied by the incident power density gives the dissipated power of
(2-88).

Finally the capture area is defined as the equivalent area. which when multiplied
by the incident power density leads to the total power captured, collected, or inter-
cepted by the antenna. Under conjugate matching this is written. similar to (2-96), as

P [R-,‘ + R, + R,_]

. 299
8W, | (R, + R) e

When (2-99) is multiplied by the incident power density. it leads to the captured
power of (2-89). In general, the total capiure area is equal to the sum of the other
three. or

Capture Area = Lffective Area + Scattering Area + Loss Area
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This is apparent under conjugate matching using (2-96)—-(2-99). However, it holds
even under nonconjugate matching conditions.

Now that the equivalent areas have been defined, let us introduce the aperture
efficiency €., of an antenna, which is defined as the ratio of the maximum effective
area A,,, of the antenna to its physical area A, or

A,  maximum effective area

= = 2-100
T i physical area ( )

For aperture type antennas. such as waveguides, horns, and reflectors, the maximum
effective area cannot exceed the physical area but it can equal it (A,,, = A, or 0 =
€, = 1). Therefore the maximum value of the aperture efficiency cannot exceed unity
(100 %). For a lossless antenna (R; = 0) the maximum value of the scattering area
is also equal to the physical area. Therefore even though the aperture efficiency is
greater than 50%, for a lossless antenna under conjugate matching only half of the
captured power is delivered to the load and the other half is scattered.

We can also introduce a partial effective area of an antenna for a given polari-
zation in a given direction, which is defined as “‘the ratio of the available power at
the terminals of a receiving antenna to the power flux density of a plane wave incident
on the antenna from that direction and with a specified polarization differing from the
receiving polarization of the antenna.”’

The effective area of an antenna is not necessarily the same as the physical
aperture. It will be shown in later chapters that aperture antennas with constant
amplitude and phase field distributions have maximum effective areas equal to the
physical areas; they are smaller for nonconstant field distributions. In addition, the
maximum effective area of wire antennas is greater than the physical area (if taken
as the area of a cross section of the wire when split lengthwise along its diameter).
Thus the wire antenna can capture much more power than is intercepted by its physical
size! This should not come as a surprise. If the wire antenna would only capture the
power incident on its physical size, it would be almost useless. So electrically. the
wire antenna looks much bigger than its physical stature.

To illustrate the concept of effective area, especially as applied to a wire antenna,
let us consider an example. In later chapters, we will consider examples of aperture
antennas.

Example 2.13

A uniform plane wave is incident upon a very short lossless dipole (/ << A), as shown
in Figure 2.23(a). Find the maximum effective area assuming that the radiation resis-
tance of the dipole is R, = 80(#/A)*. and the incident ficld is linearly polarized along
the axis of the dipole.

SOLUTION

For R, = 0, the maximum effective area of (2-96) reduces to

At'”l — |VT|~ i
8W, | R,
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Since the dipole is very short, the induced current can be assumed to be constant and
of uniform phase. The induced voltage is

Vy = El
where
V; = induced voltage on the dipole
E = electric field of incident wave
{ = length of dipole
For a uniform plane wave. the incident power density can be written as
El
W,' ==
21

where 7 is the intrinsic impedance of the medium (=120 ohms for a free-space
medium). Thus
(El)* 3x°

Ao = ——— = — = (.119A%
M S(ET2)80mHIAY 8w

The above value is only valid for a lossless antenna (the losses of a short dipole are
usually significant). If the loss resistance is equal to the radiation resistance (R, = R,)
and the sum of the two is equal to the load (receiver) resistance (R, = R, + R, = 2R,).
then the effective area is only one-half of the maximum effective area given above.

Let us now examine the significance of the effective area. From Example 2,13,
the maximum effective area of a short dipole with / << A was equal to A, = 0.119 bk
Typical antennas that fall under this category are dipoles whose lengths are / = A/50.
For the purpose of demonstration, let us assume that / = A/50. Because A, =
0.119A7 = Iw, = (AM50)w,, the maximum effective electrical width of this dipole is
w, = 5.95A. Typical physical diameters (widths) of wires used for dipoles may be
about w, = A/300. Thus the maximum effective width w, is about 1785 times larger
than its physical width.

2.16 MAXIMUM DIRECTIVITY AND MAXIMUM
EFFECTIVE AREA

To derive the relationship between directivity and maximum effective area. the geo-
metrical arrangement of Figure 2.24 is chosen. Antenna 1 is used as a transmitter and
2 as a receiver. The effective areas and directivities of each are designated as A,, A,
and D, D,. II' antenna 1 were isotropic, its radiated power density at a distance R
would be

P,
n = 3
4R
where P, is the total radiated power. Because of the directive properties of the antenna,
its actual density is

(2-101)

P.D,
4mR?

W, = WyD, = (2-102)
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Figure 2.24 Two antennas separated by a distance R.

The power collected (received) by the antenna and transferred to the load would be

B _ PDA, |
Pr - W.'Ar - 4“_]{2 (2-'03)
or
Py a
DA, = P (477R*) (2-103a)

If antenna 2 is used as a transmitter, | as a receiver, and the intervening medium
is linear, passive, and isotropic, we can write that

B.4,= %(47:'1?2) (2-104)
73
Equating (2-103a) and (2-104) reduces to
D, _D
T ks (2-105)

Increasing the directivity of an antenna increases its effective area in direct
proportion. Thus, (2-105) can be wrilten as

-—Dﬂ — 9—‘)—,:

AHH‘ A!‘fﬂ'
where A, and A,,, (Dy, and Dy,) are the maximim effective areas (directivities) of
antennas 1 and 2, respectively.

If antenna | is isotropic, then Dy, = | and its maximum effective area can be
expressed as

(2-106)

By = T (2-107)

Equation (2-107) states that the maximum effective area of an isotropic source is
equal to the ratio of the maximum effective area to the maximum directivity of any
other source. For example, let the other antenna be a very short (/ << A) dipole whose
effective area (0.119A* from Example 2.13) and maximum directivity (1.5) are known.
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The maximum effective area of the isotropic source is then equal o

A DH19NF A2

Ay == —— — = — 2-108
i Dy 15 Ay (2-108)
Using (2-108), we can write (2-107) as
A? _
Ar'm = Dy Ay = Dy |5— (2-109)
47

In general then, the maximum effective aperture (A,,,) of any antenna is related to jts
maximum directivity (Dg) by

=— D 2-110
em = 7 o ! )

Thus, when (2-110) is multiplied by the power density of the incident wave il leads
to the maximum power that can be delivered to the load. This assumes that there are
no conduction dielectric losses (radiation efficiency e, is unity), the antenna is
matched to the load (reflection efficiency e, is unity), and the polarization of the
impinging wave matches that of the antenna (polarization loss factor PLF and polar-
ization efficiency p, are unity). If there are losses associated with an antenna, its
maximum effective aperture of (2-110) must be modified to account for conduction-
dielectric losses (radiation efficiency). Thus,

=

Ae'm = Fed N o Dy (2-11 1)

47
The maximum value of (2-111) assumes that the antenna 18 matched 1o the load and
the incoming wave is polarization-matched to the antenna. If reflection and polari-
zation losses are also included, then the maximum effective area of (2-111) is repre-
sented by

)\1 % 1[5
Amn = iy (ET) Dl’llpn' 2 P”|'
(2-112)

2

2 | A &
€y (] - |1—‘[HJ (I') D!Iipu' : pu|ﬁ

v

I

2.17 FRIIS TRANSMISSION EQUATION AND
RADAR RANGE EQUATION

The analysis and design of radar and communications systems often require the use
of the Frits Transmission Equation and the Radar Range Equation. Because of the
importance [21] of the two equations, a few pages will be devoted for their derivation.

2.17.1 Friis Transmission Equation

The Friis Transmission Equation relates the power received to the power transmitted
between two antennas separated by a distance R > 2D°/\, where D is the largest
dimension of either antenna. Referring to Figure 2.25, let us assume that the trans-
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Figure 2.25 Geometrical orientation of transmitting and receiving
antennas for Friis transmission equation,

mitting antenna is initially isotropic. If the input power at the terminals of the trans-
mitting antenna is P,. then its isotropic power density W, at distance R from the
antenna is

P,
P %
"47R?
where ¢, is the radiation efficiency of the transmitting antenna. For a nonisotropic

transmitting antenna, the power density of (2-113) in the direction 8,. ¢, can be written
as

W, = (2-113)

PG, (6,¢,) P.D (0,
=) : = 2-114
Wi= "4 Y amR? akidy
where G,(0,. ¢,) is the gain and D,(6,, ¢,) is the directivity of the transmitting antenna
in the direction 6, ¢, Since the effective area A, of the antenna is related to its
efficiency ¢, and directivity D, by

2
A.r' == erDr(ther (:_'TT) (2'1 15)

the amount of power P, collected by the receiving antenna can be written, using
(2-114) and (2-115) as

N N°D,(0.,¢) D, (0., P, 2
=i —W, =e : P, P, 2-11
PJ f"rD, (an‘i’rJ dar Wp‘ €, (47TR)' lpl' ﬁ | ( 6)
or the ratio of the received to the input power as
&y - AZDr(HI' d)r)Dr(end"r)
AN ee, @Ry (2-117)

The power received based on (2-117) assumes that the transmitting and receiving
antennas are matched to their respective lines or loads (reflection efficiencies are
unity) and the polarization of the receiving antenna is polarization-matched to the
impinging wave (polarization loss factor and polarization efficiency are unity). If these
two factors are also included. then the ratio of the received to the input power of
(2-117) is represented by

S
P,

. Y. -
= eepeear(l — TP — IF,I"J(M) D,(6,) D, (6,,)|pe - p> | (2-118)
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For reflection and polarization-matched antennas aligned for maximum directional
radiation and reception, (2-118) reduces to

P, AV 2116
E = (M) G, Gy, (2-119)

Equations (2-117), (2-118), or (2-119) are known as the Friis Transmission Equa-
tion, and it relates the power P, (delivered to the receiver load) to the input power of
the transmitting antenna P,. The term (M47R)* is called the free-space loss factor,
and it takes into account the losses due to the spherical spreading of the energy by
the antenna.

2.17.2 Radar Range Fquation

Now let us assume that the transmitted power is incident upon a target, as shown in
Figure 2.26. We now introduce a quantity known as the radar cross section or echo
area (o) of a target which is defined as the area intercepting that amount of power
which, when scattered isotropically, produces at the receiver a density which is equal
to that scattered by the actual target [13]. In equation form

[ oW
li L= w, 2-12(
Fosiod _4171?“] Sl
or
. . W, L EP : » P || (2-120a
= lim [47R* = | = lim |47R> —= | = lim |47R? " <ua)
I Nlri[ 71' W,-] Rinx I . E“] Hl[l‘l_|: ™ ]
where

o = radar cross section or echo area  (m?)

R observation distance from target  (m)

W, = incident power density (W/m?)

W, = scattered power density (W/m?)
E'(E') = incident (scattered) electric field (V/m)
H' (H*) = incident (scattered) magnetic field (A/m)

Any of the definitions in (2-120a) can be used to derive the radar cross section of any
antenna or target. For some polarization one of the definitions based either on the
power density, electric field, or magnetic field may simplify the derivation, although
all should give the same answers | 13].

Using the definition of radar cross section, we can consider that the transmitted
power incident upon the target is initially captured and then it is reradiated isotropi-
cally, insofar as the receiver is concerned. The amount of captured power P is
obtained by multiplying the incident power density of (2-114) by the radar cross
section o, or

P,G,(6,.¢,) o P,D,(6,.¢,)

P.= oW, =0 E = er =
y 4Ry : 4Ry

(2-121)
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Figure 2.26 Geometrical arrangement of transmitter. target, and
receiver for radar range equation,

The power captured by the target is reradiated isotropically. and the scattered
power density can be written as

B P.D,(6,,¢,)
T a7 R Ry -1

The amount of power delivered to the receiver load is given by
P.D.(6,.)D,(0,,) ([ A\
4 47TR1R3

where A, is the effective area of the receiving antenna as defined by (2-115).
Equation (2-123) can be wrilten as the ratio ol the received power (o the input
power, or

Py = AW, = €upeai0 (2-123)

P, D, (6,,¢) D, (6, ,¢b,) ( A ) (2-124)

}-_J; = eca‘fg'{‘drfr 417 4WR|R2

Expression (2-124) is used to relate the received power to the input power, and it
takes into account only conduction-dielectric losses (radiation efficiency) of the trans-
mitting and receiving antennas. It does not include reflection losses (reflection effi-
ciency) and polarization losses (polarization loss factor or polarization efficiency). If
these two losses are also included, then (2-124) must be expressed as

D,(6,,¢,) D,(0,.0,)
dar

Pr ey 2
F = e('dret.'dr(l - IF;I“)(] = |FrIH) a
! (2-125)

2
x (4‘7TR-I Rg) Ipw . pFI—

where

P, = polarization unit vector of the scattered waves
- = polarization unit vector of the receiving antenna
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For polarization-matched antennas aligned for maximum directional radiation and
reception, (2-125) reduces to

P, _ "_GU:Gl)r A § (2-126)
P, 4n | 4mR Ry

Equation (2-124), or (2-125) or (2-126) is known as the Radar Range Equation. Tt
relates the power P, (delivered to the receiver load) to the input power P, transmitted
by an antenna, after it has been scattered by a target with a radar cross section (echo
area) of o,

Example 2.14

Two lossless X-band (8.2-12.4 GHz) horn antennas are separated by a distance of
100A. The reflection coefficients at the terminals of the transmitting and receiving
antennas are ().1 and 0.2, respectively. The maximum directivities of the transmitting
and receiving antennas (over isotropic) are 16 dB and 20 dB. respectively. Assuming
that the input power in the lossless transmission line connected to the transmitting
antenna is 2 W, and the antennas are aligned for maximum radiation between them
and are polarization matched. find the power delivered to the load of the receiver.

SOLUTION

For this problem

€. = €, = | because antennas are lossless.

Ipe* p,/> = 1 because antennas are polarization matched
D, = Dy, because antennas are aligned for
D, = Dn,} maximum radiation between them

Dy = 16dB = 39.81 (dimensionless)
Dy, = 20dB = 100 (dimensionless)
Using (2-125), we can write
P, = [1 — (0.17][1 — (0.2)°][A/47(100A)]*(39.81)(100)(2)
= 4.777 mW

2.17.3 Antenna Radar Cross Section

The radar cross section, usually referred to as RCS, is a far-field parameter, which is
used to characterize the scattering properties of a radar target. For a target. there is
monostatic or backscattering RCS when the transmitter and receiver ol Figure 2.26
are at the same location, and a bistatic RCS when the transmitter and receiver are not
at the same location. In designing low-observable or low-profile (stealth) targets, it is
the parameter that you attempt to minimize. For complex targets (such as aircraft,
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spacecraft, missiles, ships, tanks, automobiles) it is a complex parameter to derive. In
general, the RCS of a target is a function of the polarization of the incident wave, the
angle of incidence, the angle of observation, the geometry of the target, the electrical
properties of the target, and the frequency of operation. The units of RCS of three-
dimensional targets are meters squared (m”) or for normalized values decibels per
squared meter (dBsm) or RCS per squared wavelength in decibels (RCS/A® in dB).
Representative values of some typical targets are shown in Table 2.2 [22]. Although
the frequency was not stated, these numbers could be representative at X-band.

The RCS of a target can be controlled using primarily two basic methods: shaping
and the use of materials. Shaping is used to attempt to direct the scattered energy
toward directions other than the desired. However, for many targets shaping has to
be compromised in order to meet other requirements, such as aerodynamic specifi-
cations for flying targets. Materials is used to trap the incident energy within the target
and to dissipate part of the energy as heat or to direct it toward directions other than
the desired. Usually both methods, shaping and materials, are used together in order
to optimize the performance of a radar target. One of the ““golden rules’ (o observe
in order to achieve low RCS is to "‘round corners, avoid flat and concave surfaces,
and use material treatment in flare spots.”’

There are many methods of analysis to predict the RCS of a target [13], [22]-
[33]. Some of them are full-wave methods, others are designated as asymptotic meth-
ods, either low-frequency or high-frequency, and some are considered as numerical
methods. The methods of analysis are often contingent upon the shape, size, and
material composition of the target, Some targets, because of their geometrical com-
plexity, are often simplified and are decomposed into a number of basic shapes (such
as strips, plates, cylinders. cones. wedges) which when put together represent a very
good replica of the actual target. This has been used extensively and proved to be a
very good approach. The topic is very extensive to be treated here in any detail, and
the reader is referred to the literature [13], [22]-[33]. There is a plethora of references
but because of space limitations, only a limited number is included here to get the
reader started on the subject.

Table 2.2 RCS OF SOME TYPICAL TARGETS
Typical RCSs [22]

Object RCS (m?) RCS (dBsm)

Pickup truck 200 23
Automobile 100 20
Jumbo jet airliner 100 20
Large bomber or

commercial jel 40 16
Cabin cruiser boat 10 10
Large fighter aircraft 6 7.78
Small fighter aircraft or

four-passenger jet 2 3
Adult male 1 0
Conventional winged

missile 0.5 —3
Bird 0.01 —20
Insect 0.00001 =)

Advanced tactical fighter (0.000001 —60
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Antennas individually are radar targets which many exhibit large radar cross
section. In many applications, anlennas are mounted on the surface of other complex
targets (such as aircraft, spacecraft, satellites. missiles. automobiles) and become part
of the overall radar target. In such configurations, many antennas, especially aperture
types (such as waveguides. horns) become large contributors to the total RCS, mon-
ostatic or bistatic. of the target. Therefore in designing low-observable targets, the
antenna type. location and contributions become an important consideration of the
overall design.

The scattering and transmitting (radiation) characteristics of an antenna are related
|34]-136]. There are various methods which can be used to analyze the fields scattered
by an antenna. The presentation here parallels that in [23]. [37]-[40]. In general the
electric field scattered by an antenna with a load impedance Z; can be expressed by

i "’\ Z.’.
HZ) = B0 — 2L g >
E(Z) (0) L & Z,tF (2-127)

where
E'(Z;) = electric field scattered by antenna with a load Z;
E'(0) = electric field scattered by short-circuited antenna (Z, = 0)

I, = short-circuited current induced by the incident field on the antenna

/, = antenna current in transmitting mode
Zy = Ry + X, = antenna input impedance
E' = electric field radiated by the antenna in transmitting mode

By defining an antenna reflection coefficient of

Ly — 24
= — 2-128
v B ( !
the scattered field of (2-127) can be wrilten as
[ 1
E(Z) = E'Y0) — fi“ + TLOE! (2-129)
r

Therefore according to (2-129) the scattered field by an antenna with a load Z; is
equal to the scattered field when the antenna is short-circuited (Z, = 0) minus a term
related to the reflection coefficient and the field transmitted by the antenna.

Green has expressed the field scattered by an antenna terminated with a load 7,
in a more convenient form which allows it to be separated into the structural and
antenna mode scattering terms [23], [37]-[40]. This is accomplished by assuming that
the antenna is loaded with a conjugate-matched impedance (Z;, = Z%). Doing this
generates using (2-127) another equation for the field scattered by the antenna with a
load Z; = Z%. When this new equation is subtracted from (2-127) it eliminates the
short-circuited scattered field, and we can write that the field scattered by the antenna
with a load Z;is

E'(Z) = E'(Z) — 2 A (2-130)
/& AL 1; ER;’
Z, — Z}

I'# (2-130a)

it 2
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where

E'(Z,) = electric field scattered by the antenna with load Z;
E*(Z%) = electrie field scattered by the antenna with a conjugate-matched load

I(Z%) = current induced by the incident wave at the terminals matched with a
conjugate impedance load

* = conjugate-matched reflection coefficient
Z; = load impedance attached to antenna terminals

For the short-circuited case and the conjugate-matched transmitting (radiating)
case. the product of their currents and antenna impedance are related by [34]

IZy = I(Zy + ZF) = 2Rp15 (2-131)

where /% is the scattering current when the antenna is conjugate-matched (2, = Z%).
Substituting (2-131) into (2-130) for /1, reduces (2-130) to

I
ENZ) = E(Z%) — —I’ﬁl‘*E‘ (2-132)

It can also be shown that if the antenna is matched with a load Z, (instead of Z%),
then (2-132) can be written as

E(Z,) = E(Z,) — %I},E’ (2-133)
!

Therefore the field scattered by an antenna loaded with an impedance Z; is related
to the field radiated by the antenna in the transmitting mode in three different ways,
as shown by (2-129), (2-132), and (2-133). According to (2-129) the field scattered
by an antenna when it is loaded with an impedance Z; is equal to the field scattered
by the antenna when it is short-circuited (Z; = 0) minus a term related to the antenna
reflection coefficient and the field transmitted by the antenna. In addition, according
to (2-132) the field scattered by an antenna when it is terminated with an impedance
Z; is equal to the field scattered by the antenna when it is conjugate matched with an
impedance Z% minus the field transmitted (radiated) times the conjugate reflection
coefficient. The second term is weighted by the two currents. Alternatively, according
to (2-133), the field scattered by the antenna when it is terminated with an impedance
Z; is equal to the field scattered by the antenna when it is matched with an impedance
Z, minus the field transmitted (radiated) times the reflection coefficient weighted by

the two currents.
In (2-132) the first term consists of the structural scattering term and the second

of the antenna mode scattering term. The structural scattering term is introduced by
the currents induced on the surface of the antenna by the incident field when the
antenna is conjugate-matched, and it is independent of the load impedance. The
antenna mode scattering term is only a function of the radiation characteristics of the
antenna, and its scattering pattern is the square of the antenna radiation pattern. The
antenna mode depends on the power absorbed in the load of a lossless antenna and
the power which is radiated by the antenna due to a load mismatch. This term vanishes
when the antenna is conjugate-matched.

From the scattered field expression of (2-129), it can be shown that the total radar
cross section of the antenna terminated with a load Z; can be written as [40)]

o = Vo — (1 + T\ 0% (2-134)
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where

g = total RCS with antenna terminated with Z;
o' = RCS due to structural term

o = RCS due to antenna mode term
¢, = relative phase between the structural and antenna mode terms
If the antenna is short-circuited (I'y = — 1), then according to (2-134)

Oshon = O (2-135)
If the antenna is open-circuited (I'y = + 1), then according to (2-134)
Oopen = VT — 2V 0% = 0giqual (2-136)
Lastly, if the antenna is matched Z, = Z, (I'y = 0), then according to (2-134)
Tnach = \/0© — /a2 (2-137)

Therefore under matched conditions, according to (2-137), the range of values
{minimum to maximum) of the radar cross section is

o8 — oY =0 =0 + o (2-138)

The minimum value occurring when the two RCSs are in-phase while the maximuin
occurs when they are out-of-phase.

Example 2.15

The structural RCS of a resonant wire dipole is in-phase and in magnitude slightly
greater than four times that of the antenna mode. Relate the short-circuited, open-
circuited and matched RCSs to that of the antenna mode.

SOLUTION
Using (2-135)
Cshort = 40untenna
Using (2-136)
Topen = 20upenna(0) = 0 or very small
The matched value is obtained using (2-137), or

Tinateh = Tantenna

To produce a zero RCS, (2-134) must vanish. This is accomplished if
Re(Ty) = —1 + cos N/ oo (2-139a)
Im(I'y) = —sin o\ oo (2-139b)
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Assuming positive values of resistances, the real value of I'y cannot be greater than
unity. Therefore there are some cases where the RCS cannot be reduced to zero
by choosing Z,. Because Z, can be complex, there is no limit on the imaginary part
of FA.

In general. the structural and antenna mode scattering terms are very difficult to
predict and usually require that the antenna is solved as a boundary-value problem.
However, these two terms have been obtained experimentally utilizing the Smith chart
[37]-[39]. The total radar cross section oy ; of the antenna for any i,j receiver-trans-
mitter polarization combination can be represented by

)tl
Oy = IiGm-GmP;Pj | Apr— F*F (2-140)

where

Gy, = gain of the receiving antenna

gain of the transmitting antenna

P, = polarization efficiency of the receiving antenna

P; = polarization efficiency of the transmitting antenna

2
I

A,; = complex parameter independent of the load Z,

A and T'* can be plotted on the Smith chart for any polarization combination, and
the changes of the phasor [A,; — I'*| can be easily examined. Thus by measuring
oy, for several values of I'*, then A;; can be determined uging the Smith chart
[37]-[39].

Depending on the location of A on the Smith chart, any arbitrary antenna can be
classified into one of three possible classes, as follows:

a. |A| = 1. For this class, A lies outside the boundary of the Smith chart, and it is
not possible to reduce the scattered field to zero using any passive load, However,
using a purely reactive load, a maximum or a minimum in the scattered field can
be obtained. Antennas which fall into this class usually have a large structural
scattering term due either to their construction or strongly excited antenna modes
which do not couple to the terminals of interest.

b. |A| = 1. For this class, the values of A lie along the periphery of the Smith chart,
and a reactive load can be found which will reduce the scatiered field to zero.
Thin linear dipole antennas with lengths equal or less than half a wavelength
(I = Ay2) fall into this class.

¢. |A] < L. For this class, the values of A lie within the Smith chart, and a complex
load can be found to reduce to zero the scattered field. However maximum
scattering is obtained using a reactive load. Well designed parabolic reflectors
fall into this class.

For a monostatic system the receiving and transmitting antennas are collocated.
In addition, if the antennas are identical (G, = Gy, = G;) and are polarization-
matched (P; = P; = 1), then (2-140) for backscattering reduces to
_ A

o= -—GjlA — I'* (2-141)
dar
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If the antenna is a thin dipole. then A = | and (2-141) reduces to

)l.% 4 )lﬁ 9 Z.L =% Zj‘f
=—Gj|l — T*? = =Gj|]1 - =—=
v 47 U| | 411'Gn Zr + Za
M .l 2Ry [P . _
— My Ak 2-142
‘477' e ZL + ZA ( )

If in addition we assume that the dipole length is [ = Ay/2 and is short-circuited
(Z; = 0), then the normalized radar cross section of (2-142) is equal to

G (1.6437 |
g _ 5 _ W08 _ oeses~ 86 (2-143)
Ay T T

which agrees with experimental monostatic values reported in the literature [41]. [42].

Shown in Figure 2.27 is the measured E-plane monostatic RCS of a half-
wavelength dipole when it is matched to a load, short-circuited (straight wire) and
open-circuited (gap at the feed). The aspect angle is measured from the normal to the
wire. As expected. the RCS is a function of the observation (aspect) angle. Also it is
apparent that there are appreciable differences between the three responses. Similar
responses for the monostatic RCS of a pyramidal horn are shown in Figure 2.28(a)
for the E-plane and in Figure 2.28(b) for the H-plane. The antenna is a commercial
X-band (8.2-12.4 GHz) 20-dB standard gain horn with aperture dimension of 9.2 ¢cm
by 12.4 c¢m. The length of the horn is 25.6 cm. As for the dipole, there are differences
between the three responses for each plane. It is seen that the short-circuited response
exhibits the largest return.

=1l
Matched-load Half-wavelength dipole

pee ——— Short-circuited 3.7465 cm long x 0.2362 cm diameter
wk T Open-circuited Frequency = 4.02 GHz

=30

40

RCS (dBsm)

—60 B ,"

_ i | L
-4 =30 0

Incidence angle (degrees)

L-plane
Figure 2.27 E-plane monostatic RCS () versus incidence angle for a half-
wavelength dipole,
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b i Open-circuited Frequency = 10 GHz
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10
Matched-load Standard gain pyramidal horn
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Figure 2.28 E- and H-plane monostatic RCS versus incidence angle for a
pyramidal horn antenna.
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Antenna RCS from model measurements [43] and microstrip patches [44]. [45]
have been reported.

2.18 ANTENNA TEMPERATURE

Every object with a physical temperature above absolute zero (0 K = —273°C)
radiates energy [46]. The amount of energy radiated is usually represented by an
equivalent temperature 7, better known as brightness temperature, and it is defined
as

Ty(6, ¢) = €6, )T, = (1 — |[[[)T,, (2-144)
where
Ty = brightness temperature  (equivalent temperature: K)
€ = emissivity (dimensionless)
T,, = molecular (physical) temperature  (K)
I'(0, ¢b) = reflection coefficient of the surface for the polarization of the wave

Since the values of emissivity are ) = € = 1. the maximum value the brightness
temperature can achieve is equal to the molecular temperature. Usually the emissivity
is a function of the frequency of operation, polarization of the emitted energy, and
molecular structure of the object. Some of the better natural emitters of energy at
microwave frequencies are (a) the ground with equivalent temperature of about 300
K and (b) the sky with equivalent temperature of about 5 K when looking toward
zenith and about 100-150 K toward the horizon.

The brightness temperature emitted by the different sources is intercepted by
antennas. and it appears at their terminals as an antenna temperature. The temperature
appearing at the terminals of an antenna is that given by (2-144), after it is weighted
by the gain pattern of the antenna. In equation form, this can be written as

2
_}’{] J;] T':"(H‘ (b] G (Ha (;b] sin # dé (f¢
= i (2-145)
J{, L G(6, ¢) sin 6 dO dd

where
T, = antenna temperature (effective noise temperature of the
antenna radiation resistance: K)
G0, ¢) = gain (power) pattern of the antenna

Assuming no losses or other contributions between the antenna and the receiver, the
noise power transferred to the receiver is given by

Pr' . kTr‘lAj. (2'146)
where

P, = antennd noise power (W)
k = Boltzmann’s constant  (1.38 x 10~ * J/K)
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T, = antenna temperature  (K)
Af = bandwidth (Hz)

I

If the antenna and transmission line are maintained at certain physical tempera-
tures, and the transmission line between the antenna and receiver is lossy, the antenna
temperature 7 as seen by the receiver through (2-146) must be modified to include
the other contributions and the line losses. If the antenna itself is maintained at a
certain physical temperature 7,, and a transmission line of length /, constant physical
temperature T, throughout its length, and uniform attenuation of a (Np/unit length)
is used to connect an antenna to a receiver, as shown in Figure 2.29, the effective
antenna temperature at the receiver terminals is given by

Ti= T 4 Tppe 4 Tl — 7% (2-147)
where
|
T = (— - 1) T, (2-147a)
€a

7, = antenna temperature at the receiver terminals  (K)
T, = antenna noise temperature at the antenna terminals (2-145) (K)

T,p = antenna temperature at the antenna terminals due to
physical temperature  (2-147a) (K)

T, = antenna physical temperature  (K)
a = attenuation coefficient of transmission line (Np/m)
¢y = thermal efficiency of antenna (dimensionless)
[ = length of transmission line (m)
Ty, = physical temperature of the transmission line  (K)
The antenna noise power of (2-146) must also be modified and written as
P, = kT, Af (2-148)

where 7, is the antenna temperature at the receiver input as given by (2-147).
If the receiver itself has a certain noise temperature 7, (due to thermal noise in
the receiver components), the system noise power at the receiver terminals is given

by
P, = k(T, + T)Af = KT.Af (2-149)

P, = system noise power (at receiver terminals)

T, = antenna noise temperature (at receiver terminals)

T, = receiver noise temperature (at receiver terminals)

T, = T, + T, = effective system noise temperature (at receiver terminals)

A graphical relation of all the parameters is shown in Figure 2.29, The effective

system noise temperature 7, of radio astronomy antennas and receivers varies from
very few degrees (typically = 10 K) to thousands of Kelvins depending upon the type
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Figure 2.29 Antenna, transmission line, and receiver arrangement for
system noise power caleulation.

of antenna, receiver, and frequency of operation. Antenna temperature changes at the
antenna terminals, due to variations in the target emissions, may be as small as a
fraction of one degree. To detect such changes, the receiver must be very sensitive
and be able to differentiate changes of a fraction of a degree.

Example 2.16

The effective antenna temperature of a target at the input terminals of the antenna is
150 K. Assuming that the antenna is maintained at a thermal temperature of 300 K
and has a thermal efficiency of 99% and it is connected to a receiver through an
X-band (8.2-12.4 GHz) rectangular waveguide of 10 m (loss of waveguide = 0.13
dB/m) and at a temperature of 300 K, find the effective antenna temperature at the
receiver terminals.

SOLUTION

We first convert the attenuation coefficient from dB to Np by a(dB/m) = 20(log;, €)
a(Np/m) = 20(0.434)c(Np/m) = 8.68c(Np/m). Thus a(Np/m) = a(dB/m)/8.68 =
0.13/8.68 = 0.0149. The effective antenna temperature at the receiver terminals can
be written, using (2-147) and (2-147a), as

|
Typ = 300 —= — 1] = 3.03
T;; = ]SOE—U.H.WE} + 3‘03&,‘0.149!31 . 300[1 _ {,—[},Mglll]

= 111345 + 2.249 + 7731 = 190904 K

The results of the above example illustrate that the antenna temperature at the
input terminals of the antenna and at the terminals ol the receiver can differ by quite
a few degrees. For a smaller transmission line or a transmission line with much smaller
losses. the difference can be reduced appreciably and can be as small as a fraction of
a degree.
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PROBLEMS

2.1.  Derive (2-7) given the definitions of (2-5) and (2-6)

2.2. A hypothetical isotropic antenna is radiating in free space. At a distance of 100 m from
the antenna, the total electric field (Eg) is measured to be 5 V/m. Find
(a) the power density (W)
(b) the power radiated (P,.q)

2.3, The maximum radiation intensity of a 90% efficiency antenna is 200 mW/unit solid

angle. Find the directivity and gain (dimensionless and in dB) when the
(a) input power is 125.66 mW
(b) radiated power is 125.66 mW
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The power radiated by a lossless antenna is 10 Watts. The directional characteristics of
the antenna are represented by the radiation intensity of

U = By cos’t (W/unit solid angle) 0=f=a2 0=¢=27w

Find the

(a) maximum power density (in walts per square meter) at a distance of 1000 m (assume
far field distance). Specify the angle where this occurs.

(b) directivity of the antenna (dimensionless and in dB)

(c) gain of the antenna (dimensionless and in dB)

In target-search ground-mapping radars it is desirable to have echo power received

from a target. of constant cross section, to be independent of its range. For one such

application, the desirable radiation intensity of the antenna is given by

1 =< 207
Uel, ¢) = < 0.342 cse(@) 2°=0< 60° ) 0° = = 360°
0 60° = f = 180°

Find the directivity (in dB) using the exact formula.

A beam antenna has half-power beamwidths of 307 and 35% in perpendicular planes
intersecting at the maximum of the mainbeam. Find its approximate maximum effective
aperture (in A%) using (a) Kraus’ and (b) Tai and Pereira’s formulas. The minor lobes
are very small and can be neglected,

The normalized radiation intensity of a given antenna is given by

(a) U/ = sin A sin ¢ (b) U = sin Asin® ¢

(¢) U = sin @sin® ¢ (d) U/ = sin® Osin ¢

(e) U = sin®* fsin* ¢ (D U = sin’ #sin’ ¢

The intensity exists only in the 0 = # = 7, 0 = ¢» = arregion, and it is zero elsewhere.
Find the

(a) exact directivity (dimensionless and in dB).

(b) azimuthal and elevation plane half-power beamwidths (in degrees).

Find the directivity (dimensionless and in dB) for the antenna of Problem 2.7 using
(a) Kraus' approximate formula (2-26)

(b) Tai and Pereira’s approximate formula (2-30a}

For Problem 2.5, determine the approximate directivity (in dB) using

{a) Kraus' formula

{b) Tai and Pereira’s formula.

The normalized radiation intensity of an antenna is rotationally symmetric in ¢, and it
is represented by

| 0°= 6 < 30°

0.5 30°=9<60°
U=1o01 er=eo<or

0 90° = 0 = 180°

(a) What is the directivity (above isotropic) of the antenna (in dB)?
(b) What is the directivity (above an infinitesimal dipole) of the antenna (in dB)?
The radiation intensity of an antenna is given by

Lo, ¢y = cos® @sin® o
for0 = = 7/2and 0 = ¢ = 27 (i.e., in the upper half-space). It is zero in the lower
half-space.
Find the

(a) exact directivity (dimensionless and in dB)
(b) elevation plane half-power beamwidth (in degrees)
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2.12.  The normalized radiation intensity of an antenna is symmetric. and it can be approxi-

2,14

[
=

1o
i

]
e

ro
)
=2

mated by
| 0° = f < 30°
vy =1 0 30 < g
| 0.866 i
0 90° = g = 180°

and it is independent of ¢. Find the

(a) exact directivity by integrating the function

(h) approximate directivity using Kraus® formula

The maximum gain of a horn antenna is +20 dB. while the gain of its first sidelobe is
— 15 dB. What is the difference in gain between the maximum and first sidelobe:

(a) indB

(b) as a ratio of the field intensities.

The normalized radiation intensity of an antenna is approximated by

U=sind

where () = 0 = 7, and 0 = ¢ = 27, Determine the directivity using the

(2) exact formula

(b) formulas of (2-33a) by McDonald and (2-33b) by Pozar

(¢) computer program DIRECTIVITY at the end of the chapter

Repeat Problem 2.14 for a A/2 dipole whose normalized intensity is approximated by

U=sin'0

Compare the value with that of (4-91) or 1.643 (2.156 dB).
The radiation intensity of a circular loop of radius and « of constant current is given hy

U = J (ka sin 8), O0=éd=m and 0=d¢ =2m

where J(x) is the Bessel function of order 1. For a loop with radii of @ = A/10 and
A20, determine the directivity using the:
(a) formulas (2-33a) by McDonald and (2-33b) by Pozar.
(b) computer program DIRECTIVITY at the end of the chapter.
A subroutine to compute the Bessel function can be found in the computer program at
the end of Chapter 5. Compare the answers with that of a very small loop represented
by 1.5 or 1.76 dB.
Find the directivity (dimensionless and in dB) for the antenna of Problem 2.7 using
numerical techniques with 10° uniform divisions and with the field evaluated at the
(a) midpoint
(b) trailing edge of each division
Compute the directivity values of Problem 2.7 using the directivity computer program
at the end of this chapter.
The far-zone electric field intensity (array factor) of an end-fire two-element array
antenna, placed along the z-axis and radiating into [ree-space, is given by

— fher

E:cos[g(cus()—l)]er, O=f=w

Find the directivity using

(1) Kraus' approximate formula

(b) the DIRECTIVITY computer program at the end of this chapter
Repeat Problem 2.19 when

— fkr

; ==
3

E = cos [g{cns g + l)]
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The radiation intensity is represented by

U= Uy sin (7 sin 6), 0=80=#2 and 0=¢ =27
() elsewhere

Find the directivity

(a) exactly

(b) using the computer program DIRECTIVITY at the end of the chapter,

The radiation intensity of an aperture antenna, mounted on an infinite ground plane
with z perpendicular to the aperture. is rotationally symmetric (not a function of ),
and it is given by

% s [sin (77 sin 3}]3

T sin #

Find the approximate directivity (dimensionless and in dB) using

(a) numerical integration, Use the DIRECTIVITY computer program at the end of this
chapter.

(b) Kraus' formula

{¢) Tai and Pereira’s formula

The normalized far-zone field pattern of an antenna is given by

(sinfBcos’ ) O0=0=m and 0= = w2
E = 3d2=¢d=2w
0 elsewhere

Find the directivity using

(a) the exact expression

(b) Kraus' approximate formula

(¢) Tai and Percira’s approximate formula

(d) the computer program DIRECTIVITY at the end of this chapter

The normalized field pattern of the main beam of a conical horn antenna, mounted on
an infinite ground plane with z perpendicular to the aperture, is given by

Jy(ka sin 6)
sin ¢

where a is its radius at the aperture. Assuming that @ = A, find the

(a) hall-power beamwidth

(b) directivity using Kraus™ approximate formula

A uniform plane wave, of a form similar to (2-55), is traveling in the positive z-axis.
Find the polarization (linear, circular, or elliptical). sense of rotation (CW or CCW),
axial ratio (AR), and tilt angle 7 (in degrees) when

(a) E, = k. Ad = ‘b_\' — ¢, =0 (b} £, # E., Ap = ‘.bll.' =gy =0
© Ec=Eo Adp=dy— =2 () E, = E, Ap =y~ = —ail2
(e) B, = E, A= — ¢, = 74 () B, = B, Ap =14 — &, = —7/d

() E = 05E. Ap= ¢, — ¢, = w2 (h) E,
In all cases, justify the answer,

Derive (2-66), (2-67), and (2-68).

Write a general expression for the polarization loss factor (PLF) of two linearly polar-
ized antennas if

(a) both lie in the same plane

(h) both do not lie in the same plane

A linearly polarized wave traveling in the positive z-direction is incident upon a cir-
cularly polarized antenna. Find the polarization loss factor PLF (dimensionless and in
dB) when the antenna is (based upon its transmission mode operation)

(a) right-handed (CW) (b) left-handed (CCW)

05 By Adp = dy — , = —ml2
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2.29. A circularly polarized wave, traveling in the positive z-direction, is incident upon a
circularly polarized antenna. Find the polarization foss factor PLF (dimensionfess and
in dB) for right-hand (CW) and left-hand (CCW) wave and antenna,

2.30. The electric field radiated by a rectangular aperture, mounted on an infinite ground
plane with z perpendicular to the aperture, is given by

E = [d;cos & — @ sin ¢ cos 6] f(r, 6, ¢)

where f(r, 8, ¢) is a scalar function which describes the field variation of the antenna,
Assuming that the receiving antenna is linearly polarized along the x-axis, find the
polarization loss factor (PLF).

2.31. A circularly polarized wave, traveling in the + z-direction, is received by an elliptically
polarized antenna whose reception characteristics near the main lobe are given approx-
imately by

B, = (24, + j&,j f(r. &, @)

Find the polarization loss factor PLF (dimensionless and in dB) when the incident wave
is

(a) right-hand (CW)

(b) left-hand (CCW)

circularly polarized. Repeat the problem when

Ea == [25‘ = Ja;]f{h 0. )

In each case, what is the polarization of the antenna? How does it match with that of
the wave?

2.32. A linearly polarized wave (raveling in the negative z direction has a tilt angle (1) of
45° It is incident upon an antenna whose polarization characteristics are given by

& i 45,: g J;ﬁv
P ‘\/ﬁ
Find the polarization loss factor PLF (dimensionless and db).

2.33.  An elliptically polarized wave traveling in the negative z-direction is received by a
circularly polarized antenna whose main lobe is along the @ = 0 direction. The unit
vector describing the polarization of the incident wave is given by

_ 2&, + ja,

pw Vfg
Find the polarization loss factor PLF (dimensionless and in dB) when the wave that
would be transmitted by the antenna is
(a) right-hand CP
(b) left-hand CP
2.34. A CW circularly polarized uniform plane wave is traveling in the +z direction. Find
the polarization loss factor PLF (dimensionless and in dB) assuming the receiving
antenna (in its transmitting mode) is
(a) CW circularly polarized
(b) CCW circularly polarized
A linearly polarized uniform plane wave traveling in the +z direction, with a power
density of 10 milliwatts per square meter, is incident upon a CW circularly polarized
antenna whose gain is 10 dB at 10 GHz. Find the
(a) maximum effective area of the antenna (in square meters)
(b) power (in watts) that will be delivered to a load attached directly to the terminals
of the antenna
A linearly polarized plane wave traveling along the negative z-axis is incident upon an
elliptically polarized antenna (either CW or CCW), The axial ratio of the antenna

)
[
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s
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polarization ellipse is 2:1 and its major axis coincides with the principal x-axis. Find
the polarization loss factor (PLF) assuming the incident wave is linearly polarized in
the
(a) x-direction
(b) y-direction

2.37. A wave traveling normally outward from the page (toward the reader) is the resultant
of two elliptically polarized waves, one with components of E given by:

&, = 3cos wr
8. =17 cos(wr + ;—T)

and the other with components given by:
€, = 2cos

L 1T
€ = 3coslat — —
cm(m 2)

(a) What is the axial ratio of the resultant wave?
(b) Does the resultant vector E rotate clockwise or counterclockwise?

2.38. A linearly polarized antenna lying in the x-y plane is used to determine the polarization
axial ratio of incoming plane waves traveling in the negative z-direction. The polari-
zation of the antenna is described by the unit vector

P, = @, cos i + ja, sin

I IS TR G M I — T
09+~ = 0.9 - |
0.8 & 0.8
07 - 0.7

L 06 L
2 05 = 05
0.4 - - L4
03 = 0.3
02 = 0.2

L1+ = 0.1 -

() | | | L 1 | | 0 | | 1 | i | L.

0 50 100 150 200 250 300 3350 0 50 100 150 200 250 300 350

yideg yideg)
(u) PLT versus (b) PLF versus y

I
04
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

PLF

L It 1
150 200 250 300 350
W (deg)

| 1
0 50 100

(¢) PLF versus y




108

2.39.

2.40.

2.41.

242,

2,43,

Chapter 2 Fundamental Parameters of Antennas

where i is an angle describing the orientation in the x-v plane of the receiving antenna.
Below are the polarization loss factor (PLF) versus receiving antenna orientation curves
obtained for three different incident plane waves. For each curve determine the axial
ratio of the incident plane wave.

A A2 dipole. with a total loss resistance of 1 ohm, is connected to a generator whose
internal impedance is 50 + j25 ohms. Assuming that the peak voltage of the generator
is 2 V and the impedance of the dipole, excluding the loss resistance, is 73 + j42.5
ohms, find the power

(a) supplied by the source (real)

(b) radiated by the antenna

(c) dissipated by the antenna

The antenna and generator of Problem 2,39 are connected via a 50-ohm A/2-long lossless
transmission line. Find the power

(a) supplied by the source (real)

(b) radiated by the antenna

(c) dissipated by the antenna

An antenna with a radiation resistance of 48 ohms, a loss resistance of 2 ohms, and a
reactance of 50 ohms is connected to a generator with open-circuit voltage of 10 V and
internal impedance of 50 ohms via a A/4-long transmission line with characteristic
impedance of 100 ohms.

{(a) Draw the equivalent circuit

(b) Determine the power supplied by the generator

(¢) Determine the power radiated by the antenna

A transmitter, with an internal impedance Z; (real), is connected to an antenna through
a lossless transmission line of length / and characteristic impedance Z,. Find a simple
expression for the ratio between the antenna gain and its realized gain.

Z, | ! |
AN ! |
| |
| |
Ve : z, || Vi) = A [ + T0)eti
Iy = ; [e T8 p(yetit
Transmitter Transmission ling Antenna ‘¢
|

x={ —»x

V, = strength of voltage source

Z, = R, + jXi, = input impedance of the antenna

Zy = Ry = characteristic impedance of the line

Pyeceped = power accepted by the antenna {Pccopes = Re[VIO)F(0)]}

Poaitante = power delivered to a matched load [i.e., Z, = Zf = Zy]

The input reactance of an infinitesimal linear dipole of length A/60 and radius a = A/200
is given by

[In(€/a) — 1]

L il tan(kf)

Assuming the wire of the dipole is copper with a conductivityof 5.7 % 107 S/m,
determine at f = 1 GHz the

(a) loss resistance

(b) radiation resistance

(c) radiation efficiency

(d) VSWR when the antenna is connected to a 50-ohm line
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244, Adipole antenna consists of a circular wire of length /. Assuming the current distribution
on the wire is cosinusoidal. i.e.,

R a4
e

/ ) —Z=z =12

ILiz) = I cus(
where [, is a constant, derive an expression for the loss resistance R, which is one-
half of (2-90b).

245, The E-field pattern of an antenna, independent of ¢, varies as follows:
I °=0= 45°
E=40 457 < o= 90°
Lo9° < 9= 180°

(a) What is the directivity of this antenna?
(b) What is the radiation resistance of the antenna at 200 m from it if the field is equal
to 10 Vim (rms) for # = 07 at that distance and the terminal current is 3 A (rms)?

246, A 1-m long dipole antenna is driven by a 150 MHz source having a source resistance

of 50 ohms and a voltage of 100 V. If the ohmic resistance of the antennas is given by

R, = 0.625 ohms. find:

{a) The current going into the antenna (/,,)

(b) The average power dissipated by the antenna

(¢) The average power radiated by the antenna

(d) The radiation efficiency of the antenna
2.47.  Show that the effective length of a linear antenna can be written as

JZf

Ry

"

which for a lossless antenna and maximum power transfer reduces to

'f oo 1 AI'JH.R?
5 vV 7

A, and A, represent, respectively. the effective and maximum elfective apertures of
the antenna while 7 is the intrinsic impedance of the medium.

248, An antenna has a maximum effective aperture of 2.147 m” at its operating frequency
of 100 MHz. It has no conduction or dielectric losses. The input impedance of the
antenna itself is 75 ohms, and it is connected to a 30-ohm transmission line, Find the
directivity of the antenna system (*‘'system”" meaning includes any effects of connection
to the transmission line). Assume no polarization losses.

249, An incoming wave, with a uniform power density equal to 10~ W/m?* is incident
normally upon a lossless horn antenna whose directivity is 20 dB. At a frequency of
1) GHz. determine the very maximum possible power that can be expected to be
delivered to a receiver or a load connected 1o the horn antenna. There are no losses
between the antenna and the receiver or load.

2.50.  For an X-band (8.2-12.4 GHz) rectangular horn, with aperture dimensions of 5.5 cm

and 7.4 cm. find its maximum effective aperture (in em®) when its gain (over isotropic)

is

(a) 14.8 dB at 8.2 GHz

(b) 16.5dB at 10.3 GHz

{c) 18.0dB at 124 GHz

A 30-dB, right-circularly polarized antenna in a radio link radiates 5 W of power at 2

GHz. The receiving antenna has an impedance mismatch at its terminals, which leads

to a VSWR of 2. The receiving antenna is about 93% efficient and has a field pattern

near the heam maximum given by E, = (24, + ja,) (0, ¢). The distance between

!‘-J
n
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the two antennas is 4,000 km, and the receiving antenna is required to deliver 10~
W 1o the receiver. Determine the maximum effective aperture of the receiving antenna.
The radiation intensity of an antenna can be approximated by

cos’(#) 0°=6<90°
e, o) = with 0 = ¢ = 360°
0 90° = 6 = 180°

Determine the maximum effective aperture (in m*) of the antenna if its frequency of

operation is /= 10 GHz.

A communication satellite is in stationary (synchronous) orbit about the earch {assume

altitude of 22.300 statute miles). Its tranymitter generates 8.0 W. Assume the transmit-

ting antenna is isotropic, Its signal is received by the 210-ft diameter tracking parabo-

loidal untenna on the earth at the NASA tracking station at Goldstone, California, Also

assume no resistive loss in either antenna, perfect polarization match, and perfect

impedance match at both antennas. At a frequency of 2 GHz. determine the:

(a) power density (in watts/m®) incident on the receiving antenna.

(b) power received by the ground-based antenna whose gain is 60 dB.

A lossless (¢, = 1) antenna is operating at 100 MHz and its maximum effective

aperture is 0.7162 m® at this frequency, The input impedence of this antenna is 75

ohms. and it is attached to a 50-ohm transmission line. Find the directivity (dimension-

less) ol this antenna if it is polarization matched.

A resonant, lossless (e, = 1.0) half-wavelength dipole antenna, having a directivity

ol 2.156 dB, has an mput impedance of 73 ohms and is connected to a lossless, 50

ohms transmission line. A wave. having the same polarization as the antenna. is incident

upon the antenna with a power density of 5 W/m® at a frequency of 10 MHz. Find the

received power available at the end of the transmission line,

Two X-band (8.2-12.4 GHz) rectangular horns, with aperture dimensions of 3.5 em

and 7.4 ¢m and each with a gain of 16.3 dB (over isotropic) at 10 GHz, are used as

transmitting and receiving antennas. Assuming that the input power is 200 mW, the

VSWR of each is 1.1, the conduction-dielectric efficiency is 100%, and the antennas

are polarization-matched, find the maximum received power when the horns are sepa-

rated i air by

(a) 5m

(b) 50 m

(¢) 500 m

Transmitting and receiving antennas operating at 1 GHz with gains (over isotropic) of

20 and 15 dB. respectively. are separated by a distance of 1 km. Find the maximum

power delivered Lo the load when the input power is 150 W. Assume that the

(a) antennas are polarization-matched

(b) transmitting antenna is circularly polarized (either right- or left-hand) and the
receiving antenna is linearly polarized,

Two lossless, polarization matched antennas are aligned for maximum radiation be-

tween them, and are separated by a distance of 30A. The antennas are matched to their

transmission lines and have directivities of 20 dB. Assuming that the power at the input

terminals of the transmitting antenna is 10 W, find the power at the terminals of the

receiving antenna,

Repeat Problem 2.58 for two antennas with 30 dB directivities and separated by 1004,

The power at the input terminals is 20 W.

Transmitting and receiving antennas operating at | GHz with gains of 20 and 15 dB,

respectively, are separated by a distance of 1 km. Find the power delivered to the load

when the input power is 150 W. Assume the PLF = 1.

A series of microwave repeater links operating at 10 GHz are used to relay television

signals into a valley that is surrounded by steep mountain ranges. Each repeater consists

of a receiver, transmitter, antennas and associated equipment. The transmitting and
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receiving antennas are identical horns, each having gain over isotropic of 15 dB, The
repeaters are separated in distance by 10 km. For acceptable signal-to-noise ratio, the
power received at each repeater must be greater than 10 nW. Loss due to polarization
mismatch is not expected o exceed 3 dB. Assume matched loads and free space
propagation conditions. Determine the minimum transmitter power that should be used.
A one-way communication system, operating at 100 MHz. vses two identical A/2
vertical, resonant, and lossless dipole antennas as transmitting and receiving elements
separated by 10 km. In order for the signal to be detected by the receiver, the power
level at the receiver terminals must be at least 1 uW, Each antenna is connected to the
transmitter and receiver by a lossless 50-§) transmission line. Assuming the antennas
are polarization-matched and are aligned so that the maximum intensity of one is
‘directed toward the maximum radiation intensity of the other, determine the minimum
power that must be generated by the transmitter so that the signal will be detected by
the receiver. Account for the proper losses from the transmitter to the receiver.
In a long-range microwave communication system operating at 9 GHz, the transmitting
and receiving antennas are identical, and they are separated by 10,000 m. To meet the
signal-to-noise ratio of the receiver, the received power must be at least 10 uW.
Assuming the two antennas are aligned for maximum reception to each other, including
being polarization matched, what should the gains (in dB) of the transmitting and
receiving antennas be when the input power to the transmitting antenna is 10 W?
A rectangular X-band horn, with aperture dimensions of 5.5 em and 7.4 cm and a gain
of 16.3 dB (over isotropic) at 10 GHe, is used to transmit and receive energy scattered
from a perfectly conducting sphere of radius ¢ = 5A. Find the maximum scattered
power delivered to the load when the distance between the horn and the sphere is
(a) 200A
(h) 5004
Assume that the input power is 200 mW, and the radar cross section is equal to the
geometrical cross section,
A radar antenna, used for both transmitting and receiving, has a gain of 130 (dimen-
sionless) at its operating frequency of 5 GHz. It transmits 100 kW, and is aligned for
maximum directional radiation and reception to a target 1 km away having a radar
cross section of 3 m®, The received signal matches the polarization of the transmitted
signal. Find the received power.
In an experiment to determine the radar cross-section of a Tomahawk cruise missle, a
1,000 W, 300 MHz signal was transmitted toward the target. and the received power
was measured to be 0,1425 mW. The same antenna, whose gain was 75, was used for
both transmitting and receiving. The polarizations of both signals were identical
(PLF = 1), and the distance between the antenna and missile was 500 m. What is the
radar cross section ol the cruise missile?
Repeat Problem 2.66 for a radar system with 1.000 W, 100 MHz transmitted signal.
0.01 W received signal. an antenna with a gain of 75, and separation between the
antenna and target of 700 m.
Transmitting and receiving antennas operating at | GHz with gains (over isotropic) of
20 and 15 dB, respectively. are separated by a distance of | km. Find the maximum
power delivered to the load when the input power is 150 W, Assume that the
(a) antennas are polarization-matched
(b) transmitting antenna is circularly polarized (either right- or left-hand) and the
receiving antenna is linearly polarized.
The maximum radar cross section of a resonant linear A/2 dipole is approximately
(0.86A°. For a monostatic system (i.e., transmitter and receiver at the same location),
find the received power (in W) if the transmitted power is 100 W, the distance of the
dipole from the transmitting and receiving antennas is 100 m. the gain of the transmitting
and receiving antennas is 15 dB each. and the frequency ol operation is 3 GHz. Assume
a polarization loss factor of — 1 dB,
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2.70. The effective antenna temperature of an antenna looking toward zenith is approximately

2,71,

5 K. Assuming that the temperature of the transmission line (waveguide) is 72°F, find
the effective temperature ai the receiver terminals when the attenuation of the trams-
mission line is 4 dB/100 ft and its length is

(a) 21t

(b) 100 ft

Compare it to a receiver noise temperature of about 54 K.

Derive (2-147). Begin with an expression that assumes that the physical temperature
and the attenuation of the transmission line are not constant.






